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EDITOR’S PREFACE

The editors believe that the reader who has finished the study of this
book will see the full justification for including it in a series of volumes
dealing with aeronautical subjects.

However, the editor’s preface usually is addressed to the readér who
starts with the reading of the volume, and therefore a few words on our
reasons for including Professor Michal’s book on matrices.dnd tensors
in the GALCIT series seem to be appropriate. K7\

Bince the beginnings of the modern age of the aerohatitical sciences
a close cooperation has existed between appliéd\mathematics and
aeronautics. Engineers at large have always appreciated the help of
applied mathematics in furnishing them practiql'ﬂ methods for numerical
and graphical solutions of algebraic and #ifisrential equations. How-
ever, aeronautical and also electrical epgiimérs are faced with problems
reaching much further into several demiains of modern mathematics.
As a matter of fact, these branches wf engineering science have often
exerted an inspiring influence on“he development of novel methods in
applied mathematies. RA

One branch of applied mathematics which fits especially the needs
of the seientific aeronautical engineer is the matrix and tensor ealculus.
The matrix operatiogs Yepresent a powerful method for the solution of
problems dealing with mechanical systems with a certain number of
degrees of freedomi. The tensor calculus gives admirable insight into
eomplex pr lems of the mechanics of continuous media, the mechanics
of fluids, @nd elastic and plastic media.

Professdr Michal’s course on the subject given in the frame of the
wat-iraining program on engineering science and management has
found a surprisingly favorable responsc among engineers of the aero-
nautical industry in the Southern Californian region. The editors be-
lieve that the engineers throughout the country will welcome a book
which skillfully unites exact and clear presentation of mathematical
statements with fitness for immediate practical applications.

THEODORE voN KARMAN
Cragk B. MiLLizan



PREFACE

This volume is based on a series of lectures on matrix caleulus and
tensor calculus, and their applications, given under the sponsorship
of the Fingineering, Science, and Management War Training (ESMWT)
program, from August 1942 to March 1943. The group taking the
course included a considerable number of outstanding research en-
gineers and directors of engineering research and development. I am
~ very grateful fo these men who welcomed me and by their interest
in my lectures encouraged me. O\

The purpose of this book is to give the reader a working knowlédge
of the fundamentals of matrix calculus and tensor ealeulug; which he
may apply to his own field. Mathematicians, physicists, meteorclogists,
and eleetrical engineers, as well as mechanieal and,é,e’ronautical en-
gineers, will discover principles applicable to theirespective fields.
The last group, for instance, will find material sn»vibrations, aireraft
flutter, elasticity, hydrodynamics, and fluid feechanics.

The book is divided into two independent parts, the first dealing
with the matrix caleulus and its applications, the second with the
tensor caleulus and its applications, ¢The minimum of mathematical
concepts is presented in the introduction to each part, the more ad-
vanced mathematical ideas heing developed as they are needed in
connection with the applications in the later chapters.

The two-part division of the book is primarily due to the fact that
matrix and tensor ealeu s are essentially two distinet mathematical
studies. The matrix\caleulus is a purely analytic and algebraic sub-
ject, whereas theM#rsor caleulus is geometric, being connected with
transformation&/of coordinates and other geometric concepts. A care-
ful reading\if‘.’the first chapter in each part of the book will clarify
the meqning of the word “tensor,” which is oceasionally misused in
moderivscientific and engineering literature.

d"wigh to acknowledge with gratitude the kind cooperation of the
Douglas Aireraft Company in making available some of its work in
connection with the last part of Chapter 7 on aircraft flutter. It is a
pleasure to thank several of my students, especially Dr, J. E. Lipp
and Messrs, C. H. Putt and Paul Licher of the Douglas Aircrait
Company, for making gvailable the material worked out by Mr. Lieber
and his research group. I am also very glad to thank the members of
my seminar on applied mathematies at the California Institute for
their helpful suggestions. I wish to make special mention of Dr. C. C.

1X
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Lin, who not only took an active part in the seminar but who als'o
kindly consented to have his unpublished researches on some d'ramat-lc
applications of the tensor ealculus to boundary-layer theory in aero-
nautics incorporated in Chapter 18. This furnishes an application of
the Riemannian tensor calculus deseribed in Chapter 17. I should
like also to thank Dr. W. Z. Chien for his timely help.

I gratefully acknowledge the suggestions of my colleague Professor
Clark B. Millikan concerning ways of making the book more useful
to aeronautical engineors, O

Above all, T am indebted to my distinguished colleague and»{riend,
Professor Theodore von Kérmén, director of the Guggenheim Graduate
Sehool of Aeronauties at the California Institute, for honoring me by
an invifation to put my lecture notes in book form for Publication in
the GALCIT series. I have slso the delightful plj}{{'leg’e of expressing
my indebtedness to Dr. Kérman for his inspiring ‘eonversations and
wise counsel on applied mathematics in genera] and this volume in
particular, and for encouraging me to make‘gontacts with the aircraft
industry on an advanced mathematical letrel.

I regret that, in order not to delay @nduly the publieation of this
book, I am unable to inchude somea of my more recent unpublished
researches on the applications of the tensor calculus of curved infinite
dimensional spaces to the vibraﬁohs of elastic beams and other elastio
media,

i"'x\
Carrrorma InstrroTe o}?h:crmomar
Ocroper, 1046
N\ X

ARisTorLE D. MIcHAL
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PART I. MATRIX CALCULUS
AND ITS APPLICATIONS

CHAPTER 1

ALGEBRAIC PRELIMINARIES

Introduction, N

Although matrices have been investigated hy mathematicians fopal-
most a century, their thoroughgoing applieation to physics,'t éigineer-
ing, and other subjects?— such as cryptography, psychdlogy, and
educational and other statistical messurements — hag ‘qa];én place only
since 1925. In particular, the use of matrices in . aepotiautical engi-
neering in connection with small oscillations, aircrafffiuttor, and elastic
deformations did not receive much attention bg@né 1935. It is inter-
esting to note that the only book on matrices With systematic chapters
on the differential and integral caleulus pf\matrices was written by
three aeronautical engineers,} Dt

L

Definitions and Notations, o
A table of mn numbers, called‘:e]’ements, arranged in a rectangular
array of m rows and n columng s called a matriz ¥ with m rows and n
columns. If o) is the elemeri:téu the ¢th row and jth column, then the
matrix can be written déwn in the following pictorial form with the
conventional double ha#on each side.
N\ 1 1

{ a, O, » &y
o \u 2 8 2
2N\ G, G, y &

Q
S
N\ m o _m ot
\ ) Oy Ugy =° ) Gy

In the expression & the indez i is called a superseript and the index j a
subscript. It is to be emphasized that the superscript ¢ in g} is nof the
¢th power of a variable a;. .

I the number m of rows is equal to the number = of columns, then

t Superior numbers refer fo the notes at the end of the ook,
1 Frazer, Duncan, and Collar, Elementary Matrices and Some Applications to
Dynamics and Differential Equations, Cambridge University Press, 1938,
1
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2 ALGEBRAIC PRELIMINARIES

the matrix is called a square matriz. The number of rows, or equiva-
lently the number of columns, will be called the order of the square
matrix. Besides square matrices, two other general types of matrices
occur frequently. One is the row mabriz

“ dyy gy » -7y Gy “ 3
the other is the column matriz

al
a QY
‘ N
2 AN
o\
3 N
om £ }g

It is to be observed that the superscript 1 in thetelements of the row
matrix was oritted. Similarly the subseriptLin the clements of the
column matrix was also omitted. All thigs done in the interest of
brevity; the index notation is unnecessdry when the index, whether a
subseript or superseript, cannot hax{e’a}: least two values.

It is often very convenient to have a more compact notation for
matrices than the one just given®\This compact notation is as follows:

if gj is the element of g matrigdin the sth row and jth column we can
write simply S

& 4
instead of string'g:g’(,oﬁt all the mn elements of the matrix. In par-
ticular, a row mabrix with element, g, in the kth column will be written

¥ “ o ”:

and & colymh matrix with element o* in the kth row will be written
."\\~

A e ).

<

'.Bl:anentary Operations on Matrices.
() Before we can use matrices effectively we must define the addition of

matrices and the mulfiplication of matrices. The definitions are those
that. have been found most useful in the general theory and in the
applications.

Let A and B be matrices of the same type, i.¢., matrices with the same
number m of rows and the same number n of columns. Let

A=l agl, B={#|.
Then by the sym 4 + B of the matrices 4 and B we shall mean the

t It will oeeasionally be conveniens to write agy

. for the clement in the ith row
&nd jth column of a square matrix. See Chapter 5 "

and the following chapters.



ELEMENTARY OPERATIONS ON MATRICES 3

uniquely obtainable matrix

C=ldl,

c;=a.‘;+b} (1:=]-,'2;"';m;j=1:2;"‘9ﬂ)-

In other words, to add two matrices of the same type, caleulate the
matrix whose elements are precisely the numerical sum of the cor-
responding elements of the two given matrices. The addition of two
matrices of different type has no meaning for us.

To complete the preliminary definitions we must make clear what we
mean when we say that two matrices are equal. Two matrices 4 = || o} |
and B = || b || of the same type are equal, written as 4 = B, tfand
only if the numerical equalities a} = b; hold for each 7 and j. O

where

Exercise R N
L -1, 2, 5| L&°
A=l o o 3, —2 s\
1.1, 2, -4, 1x N
0, 01 _'\/2: j’x&l“
B=|| 0o, o, N3 || -
1, 0 3.””2: -4
Then N
1L, =4 0, 6
A+B=| 0,0, 2 1
24N 2, -2, -3

The following results E@Bb’died in a theorem show that matric
addition has some of the\properties of numerical addition.

TasoreM. If A and B are any two matrices of the same type, then

NG A+B=B+ A,
If C s any #hind mairiz of the same type as A and B, then
A (A+B)+C =4+ (B +0).

Before we proceed with the definition of mulisplication of matrices,
a word or two must be said about two very important special square
matrices. One is the zero malrez, Le., 5 square matrix all of whose
elements are zero,

QY



4 ALGEBRAIC PRELIMINARIES

We can denote the zero matrix by the capital letter 0. Occasionally
we shall use the terminology zero matrix for a non-square matrix with
zero elements. _

The other is the unit mairiz, i.e., 2 matrix

I=|&i,
where _
=1 if ¢=j
=0 if fs4.
In the more expliclt notation

..............

One of the most useful and simplifying conventions in all mathe-
matics is the summation convention: the repetition of an index once as @
subscript and once as a superséript will indicate o summation over ihe
total range of that index. FOv example, if the range of the indices is
1 to 5, then N

abt meap&fia;b‘ or gt ah? tah® + abht + agbs,

Again we warri.the reader that the superseript ¢ in b is not the #th power
of a varieble®),

. The'deﬁnition of the multiplication of two matrices ean now be given
in a:&hja?t form with the aid of the summation convention. Let
M: aip a;: "':a}n
. Z:\’;' ai’,ag,---,a,ﬁ,
\ } Al mrrrrmens

............

2 2
b?: bz; "2 b-p
Bl rrrreeani .
mopm
a2, ;b?



ELEMENTARY OPERATIONS ON MATRICES 5
Then, by the product AB of the two matrices, we shall mean the matriz

c=dl,
where _ '
¢ = abf =12 - n §=1,2 ++-, p).

If ¢} is written out in extenso without the aid of the summation eon-
vention, we have

¢ = aibj + adb? + -+ + @l bl
It should be emphasized here that, in order that the product AB of
two matrices be well defined, the number of rows in the matrix B miust®
be precisely equal to the number of columns in the matrix 4. Tt foﬂqws
in particular that, if A and B are square matrices of the same type “then
AB as well as BA is ahoays well defined. However, it musf ‘be"empha-
sized that in general AB is not equal to BA, written ds AB = BA,
even if both AB and BA are well defined. In othef, words, matrlx
multiplication of matrices, unlike numerical multiplication, is not
always commufative. Y,

~K¢
Exzercise A\

The following example illustrates the non-commutatlmty of mafrix

multiplication. Take o \
a=|7 ol sothat ‘d§=0,a;=1,a,§=1,a§=0,
AN
and <
B=“_é QJ S\Otha’ﬂ b= —1, b= 0,5 = 0,81
Now AN/

}sl"— bt = 0)(=1) + (1)(0) =

o = alps (0)(0)+(1>(1>=1
zf\ ¢ = a%% = (1)(—1) + (0)(0) = —1,
Y = dlg - (DO + O -0

Similarly

-] 23]

-1 0
0 -1
ma-|g
But obviously AB = BA.

The unit matrix I of order » has the interesting property that it
commutes with all square matrices of the same order. In faet, if 4 is



6 ALGEBRAIC PRELIMINARIES

an arbitrary square matrix of order %, then
AI=TA = 4.
The multiplication of row and column matrices with the same
number of elements is instructive. Let
A= al
be the row matrix and
B=| b

the column matrix. Then AB = ab’, a number, or a matrix @th one
element (the double-bar notation has been omitted). \

.\:\'
Ezercise O
0 “:”§
IfA=(1201] and B=| 0}, then D
1 A~

AB = (1)) + (1)(©) £OO = 0.

This example also illustrates the faqbibhﬁt the product of two matrices
can be @ zero malriz although neither of the muliiplied matrices is a zero
matriz. o\

The multiplication of o sge@’e matriz with a column malriz ocours
Jrequently in the applicationd,” A system of n linear algebraic equations
tn nunknowns 2Y, 22, s g

i\ aizi = bt

can be writien a;‘a\}iﬂgle makriz eguation
o AX =B
in t]:fe pgknow‘p column matrix X = || 2% || and the given square
matrixd= || a; || and eolumn matrix B = il & .
Aystem of first-order differential equations
D di
O =

\/ dt
\ }
can be written as one matric differential equation

dX

‘EE=AX.

Finally a system of second-order differenti i ;
i ent
in the theory of small oscillations tal equations occurring
éz_m_é % g
e - e



ELEMENTARY OPERATIONS ON MATRICES 7

can be written as one matric second-order differential equation

-:ﬁ—2=AX.

The above illustrations suffice to show the compactness and sim-
plicity of matrie equations when use is made of matrix multiplication.

Ezercises
1. Computs the matrix AR when

1,0 « &\
A-[ 01| end B-” _?’3’3“- N

0 s

Is BA defined? Explain. '~:,\ v
2. Compute the matrix AX when A et
1,30 i !
A=) =-1,21 and X = 0 "?}
0,0,2 -2 >
Ts XA defined? Explain. \\Qv
N
Ay
~.‘\ V}
£y "“)
AN
t:‘ a3
N
N\
Ve
7 \\
O
P \
o\
P\
2O
Q°
Nos
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CHAPTER 2
ALGEBRAIC PRELIMINARIES (Continued)

Inverse of a Matrix and the Solution of Linear Equations.!. {\

The inverse ™, or reciprocal, of a real number ¢ is well-defined if
a# 0. Thert is an analogous operation for square matriees, I fAdisa
square malriz ~\ y

4=1d | e\
of order n and if the determinant | a} | » 0; Cﬂ'\l}l more extended no-
tation
o

= 0,

“atl‘)’ 'ags Tt (1:
then there exists a unigue. matriz, writlen, A" ¢n analogy to the inverse of
& number, with the ymportant properties

i
@1 ..~:{A-1A -1

The m\ngr‘lx A, if it exists, is called the snverse matriz of A.

In faof; the following more extensive result holds good. A necessary
ang sufficient condition that o matriz 4 — | & || have an inverse is that
theassociated determinant | o | 0,

¢ From now on we shall refer to the determinant @ = | of | as the

V™ determinant @ of the matrig A.  Occasionally we shall write | A | for
the determinant of A.

The general form of th
aid of 2 few results from

{ is the unit matrix.)

® inverse of a matrix can be given with the
' the theory of determinants, Leta=| o |
be g determmg.nt, not necessarily different from zero. Let of be the
feofactor Tof alin the determinant a; note that the indices 4 ajnd Jj are
Interchanged in of as compared with af{. Then the following results

T The (n ~ 1)-rowed dsterminant obtained

i from the determi iki
out the jth row and 7th column in g, naltiplyine. (s & bY striking

and then multiplying the resylt by (-1
8



INVERSE OF A MATRIX 9
come from the properties of determinants:

al ak =a ak (expansion by elements of th row);
ol = o 8% (expansion by elements of kth column).

If then the determinant a > 0, we obtain the following relations,

' @8 = &,
@2 {ﬁgﬂk, = o
on defining _
. %, O
a- N\
Let A= a f, B=| 8 I; then relations 2-2 state, in, terms of
matrix multiplication, that R >
AB=1, BA=T ﬁ“

In other words, the matrix B is precisely the mversei’na.trm A-lof A.
To summarize, we have the following computattonal result: #f the

determinant & of a square matric A = || d} | i3 Qsﬁerent Jrom zero, then
the inverse mairiz A~t of A e:msts and is gwen\by
”—H&h~

s‘

where §} = a— and of is the cofactor Qf al in the determinant a of the

mafriz A. ' A\,

These results or the invergg of 2 matrix have a simple application to
the solution of = non—hom@eneous linear (algebraic) equations in =
unknowns z', 2%, - -, x‘l\\Let the n equations be

RS djzi = b
(the n? numbers a; hre given and the » numbers b are given). On de-
fining the ma‘t{m'\es
A=l gL X =] 2 [ B,

we can,, as'm the first chapter, write the » linear equations ss one matric
equs.tlgn

AX =B
in the unknown column matrix X. If we now assume that the de-
terminant @ of the matrix A is not zero, the inverse matrix A-! will
exist and we shall have by matrix multiplication

A-(AX) = A7B.

Since 44 =7 and IX = X, we obtain the solutwn

X =A-'B
of the equation AX = B. In other words, if o} is the cofactor of of in
the determinent @ of 4, then ' = albi/a is the solution af the systein
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of n tions alx’ = bt under the condition @ 5 0. This is equivalent
to Cramer’s rule? for the solution of non-homogeneous linear equations

- a3 ratios of determinants. It is more explicit than Cramer’s rule in

that the determinants in the numerator of the solution expressions are
expanded in terms of the given right-hand sides &', 8, » b of the
linear equations. It is sometimes possible to solve the equatlons a,mf =
bé readily and obtain =i = A\%7. The inverse matrix A to 4 = || a! |
can then be read off by inspection — in fact, A= = || A} ||.

Practical methods, including approximate methods, for the ealcula-
tion of the inverse (sometimes called reciprocal) of a matrix are given in
Chapter IV of the book on matrices by Frazer, Dunecangahd Collar.
A method baged on the Cayley-Hamilton theorem wﬂl bd presented at
the end of the chapter.

A simple example on the inverse of a matrix would be instructive at
this point. ~\

Exercise )

$

Consider the two-rowed matrix 3'\ v

o1
| 1=l |
According to our notations 4%
o =0rad= 1,68 = ~1, a2 =0,
Hence the cofactors ay\of A will be

oc1 = (cof e@r of al) =0, o = {cofactor of al) = —
= (gofactor of a;) = 1, of = (cofactor of o2) —

Now A“‘ s ;8, |, where 8 = oi/a. Dut the determmant of 4 is
'(h,ls gives us immediately 8l = 0, g = -1, fi=1, gi=0.

Ino én words,
K A=t H 0 -1

P 0

\." . .
Approximate numericai examples abound in the study of airplane-

wing oscillations. For example, if

0.0176, 0.000128, 0.00289
0.000128, 0.00000824, 0.0000413
0.00289, 0.0000413, 0.000725

A::

then approximately

A7 =1 1063, 176,500, — 14,290,

~7417, -14,200., 5,150,
See exercise 2 at the end of Chapter 7.

170.8, 1,063, ~741.7[
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From the rule for the product of two determinants,? the following
result is immediate on observing closely the definition of the product
of two matrices:

If A and B are two square matrices with delerminants a and b respec-
tively, then the delerminant ¢ of the matric produst C = AB s given by the
numerical muliiplication of the two numbers a and b, i.e., ¢ = ab.

This result enables us to calculate immediately the determinant of
the inverce of a matrix. Bince AA-! = I, and since the determinant of
the unit matrix I is 1, the above result shows that the determinant of
A~tis 1/a, where a ¢s the determinant of A. N\

From the associativity of the operation of multiplication of sguare
matrices and the properties of inverses of matrices, the usual ‘index
laws for powers of numbers hold good for powers of matria?:s even
though matrie multiplication is not commutative. By t@e’dssooiaziuity
of the operation of matric multiplication we mean that;df A, B, C are
any three square matrices of the same order, then

A(BO) = (4B)C. )

If then A isa square matrix, there is a un1q1)e matrlx AA --- A with
s factors for any given positive integer s We shall write th.ls matrix
ag A* and call it the sth power of the\matrix 4. Now if we define
A*= I the unit matrix, then the, followmg index laws hold for oll
posttive integral and zero tndices s qmd 5
Ar As s ArAr = At

g{_l)q s (As)r = A7
Furthermore, these tndex\wws hold for all integral r and 5, positive or
negative, whenever A¥0ezists. This is with the understanding that
negative powers of mirices are defined as positive powers of their inverses,
Le, A is deﬁ{a:é’d“for any positive integer r by

QA A~ = (A

Multlplicatlon of Matrices by Numbers, and Matric Polynomials.
3e8ides the operations on matrices that have been discussed up fo
this section, there is still another one that is of great impertance, If
= | @ || is a matrix, not necessarily a square matrix, and « is a
number, real or complex, then by ad we shall mean the matriz || aal |.
This operation of multiplication by numbers enables us to consider
matrix polynomials of type

(2-3) - agd® 4 A 4 At 4 e oA + anl.

1 Bimilarly, if the two square matrices A and B and the column matrix X have
the same number of rows, then (AB)X = A(BX).
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In expression 2-3, as, au, ++ - , an are numbers, 4 is a square matrix,
and 7 is the unit matrix of the same order as A. In s given matrie
polynomial, the oy’s are given numbers, and 4 is a variable square
matrix,

Characteristic Equation of a Matrix and the Cayley-Hamilton Theorem.

We are now in a position to diseuss some results whose importance
cannot be overestimated in the study of vibrations of all sorts (see
Chapter 6). ~

If A= | & || is a given square matrix of order n, one can¥orm the
matrix A — A, called the characteristic matriz of A The,detérminant
of this matrix, considered as a function of A, Is & (nuiterical) poly-
nomial of degree » in A, called the characteristic funclion of A. More
explicitly, let f(A) = | M - 4 ' ; then f(A) has ‘thé form f(A) = A» +

GA T 4 - b g\ 34, Sinee @ = f{0), wq'see\that Q, = f —A4 ] ;
Le., @, is (—1)" times the deferminant of theNinatriz A. 'The algebraic
equation of degree n for . PN

JA) =04 ©

is called the characterisiic equation of e x'.':m:z‘f,:"zv}x 4, and the roots of the
equation are called the characteriglic-roots of 4.

We shall close this chapter. with what i, perhaps, the most famous
theorem in the algebrs of magrices.

Tre CAYLEY-HAMIL'J;Q’Q‘“THEOREM. Let
f({{= .Aﬂ + (-"-'lxn_1 + e + an-—lh + @y
be the chamcteris}ic Junction of o matriz A, and let I and O be the unii

matriz and; 2800 mairiz respectively with an order equal to that of A.
Then the matric polynomial equation

§"}  XrpaXeig ... ‘o X+al=0
ﬁ‘s'g;:tisﬁed byX=4A,

$

y oo
3
\:

Example

01 _
Ta.keA=”1 0”; then f(x)=|_’1‘ H=>\=_1. Here
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face value. However, such mnemonics are useful to those whe thor-
oughly understand the statement of the Cayley-Hamilton theorem.

A knowledge of the characteristic function of a matriz enables one
to compule the inverse of a matriz, if it exists, with the aid of the Cayley-
Hamilton theorem. In fact, let 4 be an n-rowed square matrix with an
inverse A7t This implies that the determinant ¢ of A is not zero.
Sinee 0 = @, = (— 1)"q, we find with the aid of the Cayley-Hamilton
theorem that A satisfies the matric equation

1
I=- -{A" @A 4 e b a2 A? + @A) ~

Multiplying both sides by A%, we see that the inverse matriz AL pan
be computed by the following formula: N

g ™

(2.4)  A-l= —[Aﬂ—l KO3V Lox R URPRIESY Py SN & N

Gn “"\'\
To compute A-! by formula 2-4 one has to know the’ coefficients a.
s, -+, Ga—1, Gy in the characteristic function of\theé given matrix 4.
Let A =1 a ||; then the frace of the mat x.>1, written tr (A), is
defined by tr (4} = «}, the sum of the n dlagonal elements a}, &, - -,
. Define the numbers? s, s, - -, 85 l)y "

{2-5) s =tr(4d}, s =1tr {4y, -- -,,};'.s;,"= tr (A7), «--, 8 =1tr (d®)
so that s is the trace of the #th posyétz of the given matrix A. It can be

shown® by a long algebraic argument that the numbers a;, '+, a,
can be computed suecessively by the following recurrence formulas:

fal = —§ \\ N

e = __(&181 + 32)

o = \'3(a231 + a5y + 83)

(2-6) <\x\"
. :§
S\ 1
) Qn = ‘"5{%—«131 + Ba—gSa + 0 + BiSp1 + 8n)e
} .

4
We can summarize our results in the following rule for the calculation
of the inverse matrix A-! to a given matrix 4.

A Ruie ror CaLcuraTioN oF THE Inverse Matrix A—L First
compute the first n — 1 powers A, A% ---, A» of the given n-
rowed matrix A. Then compute the diagonal elements only of A=
Next compute the » numbers sy, sz, *+ -, 8, as defined in 2-5. Insert
these values for the s in formula 2-6, and caleulate ay, ag, -, @s
successively by means of 2.6, Finally by formula 2-4 one ean calcu-
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Iate A from the knowledge of ai, * -+, @, and the matrices A, 42
.-+, A*L. Notice that the whole 4 is not needed in the caleulation
but merely s, = tr (A7), the trace of A=

Punched-card methods can be used to caleulate the powors of the
matrix A, The rest of the caleulations are easily made by standard
caleulating machines. Hence one method of getting numerical solutions
of a system of n linear equailions in the n unknowns =*

dai=b (| & |=0)

is to compute 4! of 4 = || af || by the above rule with the.aid of
punched-card methods and then to compute A~'B, where B &Y ¥* |,
by punched-card methods. The solution column matrix Xh= || #* ||
isgiven by X = A'B. X O

N
N

Exercises "\

L9
1. Caleulate the inverse matrixto 4 = | (1) (1] ‘ bysthedast method of thischapter.

Solution.

D
’1 8 =0, 32[3% a =08 =-1

10
4t =“0 1

. A
Now A1 = — ;ﬂ [4 +ad]= A 'EBHGB

NS

o ™y
AN ||
2. Bee the exercige gi;%én in M. D, Bingham's paper. See the bibliography.
3. Caloulate A N\he above rule when i

A -

e \oe 15 11 6 -9 -15

\< i 39 -3 _g
.\ A= 7 6 6 -3 -11
NV 7 75 -8 -1
17 12 5 -~10 -1

Afthn ealoulating A%, 43, A1
4 .\s! 5.3"41, 8 = —'217, 8 =

N
\
4

and the diagonal elements of A5, caleulate s, = 5
~17, ¢ = 3185. Inserting these values in 2.8, find

= ~5, &= 33, a3 = —51, gg = 135, g; = 225.
Incidentally the characteristic equation of 4 is

FON) = 2 — 5\ 1338 — 5102 4 1350 + 225
=+ 10 -8\ + 152 =0,
Finally, using formyls, 2.4, find

-07 64 -124 111 11

4 1] -85 80 195 -—1%0 27
= 208 -315 30 -ao0 45 270
-225 7 75 0 225

—414 53 B2 -3 342



CHAPTER 3

DIFFERENTIAL AND INTEGRAL CALCULUS OF
MATRICES

Power Series in Matrices.

Before we dizeuss the subject of power series, it is convenient to
make a few introductory remarks on general series in matrices. Let
Ao, Ay, A, A5 -+ be an infinite sequence of matrices of the same type
(i.e., same number of rows and columns) and let S, = Ay 4 Ay + A4 N
+ -+ + A, be the matric sum of the matrices Ao, A4, 45, + -+, and A\

If every element in the matrix S, converges (in the ordinary nuulerlca]
scnse) as p tends to infinity, then by 8 = h.m S, we shall mean the

matrix S of the limiting elements, If then the matmx 8 = hm S exists

jJ—)m

\
in the above sense, we shall say, by definition, that the mdfric infinite serdes

> A, converges to the matriz S. N
=0 #%¢
N

 §

Example P\%

Take Ao =1, Ax=1, A2 = ;Aa SIIlI --°,A.-=$

' 1 1
Sp = Ao+ A1+ A2 4 -- +Ap—(1+1+ ot +1‘?)I'
Hence, on recalling the exp@néion for the exponential ¢, we find that
lim S; = ef. In other w\hq EA = el.

p—s ) re
If A is a square ‘matrlx and the a;, a5, --- are numbers, one ean
consider matrie pa@gr series in A4

\Y
’§.. ZarAr

.\

I, +«+«. Then

In other. Words, matric power series are particular matric series in which
each/mairix 4, is of special type T 4, = a.4", where A is the rth power
of axquare matrix 4. (4° = I is the identity matriz) Clearly matric
polynomials (see Chapter 2) are special matric power series in which ail
the numbers ¢; after a certain value of 7 are zero.

An important example of a matric power series is the matric expo-
nential function ¢* defined by the foLlowmg matrie power series:

e =171 —42 —AS 4 ... 1 .
+A+2! SIA +

t The index r is not summed.
15
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The following properties of the matrix exponential have been used
frequently in investigations on the matrix calculus

1. The matric power series expansion for et is convergent! for all
square matrices 4.

2. AP = Pet = ¢ whenever A and B are commutative matrices,
i.e., whenever AB = BA.

3. et~ = ¢~%¢! = I. (These relations express the fact that ¢4
i the inverse matrix of ¢4.)

Every numerical power series has its matric analogue. However,
the corresponding matric power series have more complicated \proper-

tieg — for example, e*. Other examples are, say, the matricsine, sin
4, and the matrie cosine, cos A4, defined by R \)

sind=4- 1—1A3+}—1A5— N

R
cosd =1 - —A2 —A‘1 d
4'\
The usual trigonometric identities aw\not always satisfied by sin A
and cos 4 for arbitrary matrices. | \¥;
Differentiation and Integratmn ’of Matrices Depending on a Numeri-
cal Variable. o

Let A{®) be a matrix efe]:rendmg on a numerical variable ¢ so that
the elements of A (£) afe\numerical functions of £

'it:t ﬂ-i(t), a;(t): Ty avls(t)
\ \\ af(t), ag(t): Yy a‘i(t)

..................

N> ar®), &g ®, «--, ay (t)

&

Then we define the derivative of A(2), and write it (t) , by

dar(t) daz(t) dan(t)
dr ' ds "'!_E:_
da® i) | dad(y
da@ || 4 d& T Tq

_"dt"_ “"""""""'f'

...............

...........

d"dt’"’dt
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Similarly we define the infegral of A(f) by

Sa® &, L@ dt, -, S dt
fA(t) dE=|l e

............................

S @) di, Sag®) db, -+, St dt

It is no mathematical feat to show that differentiation of matrices
has the following properties:

QY
AW +BO] _dd@ , 4B \
&1 d “Ta ta R\,
o TAONO) B0, 050
63 SLa0B0ce1- 220 +A(t)—‘8£”—’b(e)
+ A(t)B(t)dG(t) KX >
ete. \V

There are important immediate conséfuences of properties 3-2 and
3-3. For example, from 3-2 and Al’fi)fl (t) = I, we see that

3-4) dA;;(t) _ _“:4‘ l(t)dA(t) A1),
Also, from 3-3, we obtah\\
@5 LY dA“)A*(t) + A(t)dA( bao + Aﬂ(z)d“l @,

dt
’\

There are sseﬂar formulas for the derivative of any positive integral
power of A{#):

Iftis 4 real variable and 4 a constant square matrix, then one obtains
’“\\; o/ d(tr A)
N\ dt
Then, with the usual term-by-term differentiation of the numerical
exponential, the following differentiation can be justified:
d ( et.éi.)
dt

= rim14,

32 3
=A+tA=+§?A=+;—'A4+--- +oee
(3-6) ’ ‘
A= 4.
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There is an important theorem in the matrix ealeulus that turns up
in the mathematical theory of airerafi fhutler (see Chapter 7). The
proof, into which we can not enter here, makes use of the modern
theory of functionals. :

TazorEM. If F(M) s a power series that converges for all x, then the
matric power series F{A) can be computed by the expansion?

3-7) Fl4) = ?;FO“)G"

where A is an n~rowed square malrix with n distinct characterighic roots
M, Az, v, Any Gnd G, Gy, - -+, Ga are nomatrices defined by®( )\

'\
G =———JJoT - 4. >
Tiow—noi - ey

. 3 m'\'\’

There are a few matters that must be kep$dh mind in order to have
a clear understanding of the meaning of thigresult. In the first place
the matric power series F(A) = ol + AAF A+ -+ + -+ when-
ever F(A) = og+ oo + a2 + -+ 40" In other words A =1 is
“replaced” by 4° = I, the unit mateik, in the transition from F()) to
F{4). Secondly to avoid am]?i’g{mities we must write explicitly the
eompact products occurring jn équation 3-8.

HO\; —M)= (- 7\5)9\2—7\1) o e = A Qs = A v (e — A,

(3-8)

Jte KA
Lo - 4) - @220 - £) - (ucsl = sl — 2) -+
(T = A).

There‘ar?'.\slﬁecia.l cases of particular interest in vibration theory (see
Cha-p!:e{s{ﬁ and 7). They correspond to the power of a matrix A7 and
thefj\sqa,thx exponential ¢!. The expansion 3-7 yields immediately

:.\ZtSEQ) A= ZR?R‘EG‘-
M i=t
N\, oand
(3-10) A = 3G,
=1

where the matrices G; have the same meaning as in 3-8,

Exercise

Caleulate the matrix e4 when A is the matrix A

B “ ! (1} H Check the result
by calculating 6A direc‘t]_y_
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Solution. The characteristic roots are A; =1, A = —1. Hence the matrices
¢ and G are ag follows:

Ml - A 1
G = AN =§ II ”'
M -4 1 -1
G 2V >“5“_1 1U
Now
2
SYewma gt L) -
eA_,;e‘G‘ 201 1“ 2 || -1 1|
Hence
a4 | cosh1 sink 1 H \‘/\\
€ =i sibh 1 coshi|~ (:\A‘
o
Y
S
\
((}\,
F
&
N
AN
A
™
s\.
O
QC)
AO
&
\O
&



CHAPTER 4

DIFFERENTIAL AND INTEGRAL CALCULUS OQOF
MATRICES (Continued)

Systems of Linear Differential Equations with Constant Coefficients,

The matric exponentisl has important applications to the solution of
systems of = linear differential equations in » unknown functions z'(t),
z:(f), +++, z*{) and with n® constant coefficients ;. The ¥ariable §
is usually the time in physical and engineering problgtﬁs.\ Without

dX o\
_ defining the derivative i we merely mentionedzl‘mﬂthe first chapter

that we can write such a system of equationg Qs.bne matric equation
ax( \4

(4'1) T = AX(Q\.

Having defined the matric derivapi‘xfe\, ‘we are enabled to view this
equation with eomplete understanding.
From formula 3-6 of the prefiens chapter we find that

(4-2) ‘;_i.;éh’—“!o)d = Ad04

where y is an arbitrarily given value of . But this result is equivalent

~ tosaying that X(#)'< [¢“ 41X, is a solution of the matric differential

equatiqn 4-1or an arbitrary column matrix X,. A glance at the
expansion, {0y the matric exponential ¢“~*'4 shows that the solution
X (?) bag'the property

O X&) = X

) .;']En summary, we have the result* that
4-3) X (5 = [e¥947x,

1s a solution® of 4+1 with the property that X (fy) = X, for any preassigned
constant column matriz X,. @ af v ’

Ezample
dal(f
Tﬂ(—) = %Q =
8o that

X _ax
dat o

20
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where
Il

and X = "

0 1
A=“10

Now A1 = 1, X2 = —1, and we saw in the last exercise of the previous
chapter that .

111 1 1 1 -1
= G = — -
G 2”11" P72 -1 1“
Henge ‘
2 .
=t A _ S gt-iangy, _ || cosh (=) sinh (¢ - &) |I' ~
¢ B ;e G = sinh (t - &) cosh {f — &) .

O\

Therefore the unique solution of the differential system PR

dX z | »
E = AX; XGU) = XIJ = Ig R N
is R&
_ | cosh ¢ — ) sinh ¢ - L)V
XO =1 sinh (¢t~ 2) cosh ¢ — 6D

This means that the unique solution of the diﬁéi‘ential system

dt du? P
E = 7% E{ = xls xl(tﬂ)’:"_j h’é} xg(tﬂ) = zﬁ

is N
{xl(t) = [eosh (¢ — {)Jey + [sinh (¢ — #p)Jo?
2*(&) = [sinh (¢ ~)Jeg + [eosh (¢ — )22

Systems of Linear Differenﬁ}él\Equations with Variable Coeflicients.
Although the matric gﬁ)}nential is not applicable to the solution of
a system of linear difiérential equations with variable coefficients
aj:(t), there are some #halogous matrie expansions that enter into the
solution of suc};\s;}j?stem. The system of differential equations

C «t .

@y QO =2 - w0

is written as one matrie differential equation
NG dX (1)

4-5) TRl ABHXE)

where A(t) = || a}(t) || and X(?) is the column matrix of the n un-
known functions zi(?).

On integrating both sides of 4-5 between 4 and ¢ we obtain the
equivalent matric equation

4-6) X = X(t) + f A®X() ds.
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By the method of auceessive substitutions, we are led to consider the
following expansion as & solution of 4-6:

@n X0 =[I+_£A(s) ds—t—j:A(s) dsz(sl_) Bk oo o]

X (to).

Now the method of suecessive substitutions for equation 4-6 can be
described as follows. In the integral term in 4-6 substitute for X{(s) its
equivalent as given by formula 4-6 itzelf. This yields ~

X() = X&) + [ L A(s) ds:lX(tg) + J:A (s) ds L 8A~(.s,)g§<sl) dn

Again substituting for X(s} its equal as given by 446 we are led to s
new expansion for X(#). Continuing indeﬁnitely.iﬁhié way we are led
t0 the matric infinite series 4-7. Ay

If we define the matrix \

Com '} AN e
¢8 Q) =I+ j; Afs) ds + L AS)ds L Als) da

/3 3 3‘1:‘.'
+J;A(8) ds .LA(S],) dS]_ ."A(Sz) d.?z + et + v . .,
. o

then it can be proved tha:tf,' ot @i(t) continuous in &, < ¢ S &,

(4-9) X = 2 A)X,

is the unique soluljonof the matric differential equation 4-5 that takes
on the arbitrarily given constant matric value X, for £ = 4. It is often
simpler to catty out the matrix multiplications first in 4-8 and 4-9
before c&p:rying out the successive integrations. If the matrix ig inde-
penc?egt;of {, then, by an evident ealculation, solution 4-9 reduces
precis to the matrix exponential type 4-3. '
{ For approximate numerical calculations, a few terms in the expansion

tfoF 24(A) may suffice in 4.9 to give a good approximation to the

solution of the matric differential equation 4-5.

Exercises

1. Integrate by matrix metk_mds the second-order differential equation

az(t)
b =) =0
subject to the initi iti %
j ® nitial conditions x(to) = i =¥
t=t

(Hint. Write the differential equation as a system of two first-order equation®
dz! dzB

a = 2%, _'dz'=331
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with initial conditions 2%({y) ~ 2o, ©%(5) = o, and use the results of the example il-
Iustrating formuls 4.3.)

2. Integrate by matrix methods the second-order differential system for har-
monic oseillations with frequency @
d2x(t) dz
i + W) = 0, z(l) = Ta, (E)tnh= Yo.
(Hini. Write the equation as a system of twa first-arder linear equations,}
8. Discuss the solutions of the differential equation

dir dt
— — t kg - N\
m a5 +8 7 + 1]
for free dampeq oscillations by matrix methods with the restriction that 8# 2\\)}5:
m = mass, § = damping factor, and & = elastic constant, so that ali threg’?n, B, &
are positive constants. Clearly the restriction rules out the eritical Qa;igpiﬁg case.
(Hint. Write the differential equation as a first-order matric differential equation

'3

dX o~V
—— = AX, N
dl 4 v
where )
0 1 ,x.\\“
A = _ ic _E ’Q..x\\.
m m FN\Y

and notice that the characteristic equation gfft‘his matriz is the “characteristic
equation® of the given secand-order diﬂ'erc&;}ja.l equation in the usual elementary
sense, ) N

4. Integrate by matrix methods the seeond-order differential equation

‘M ~ (i} =0

subject to the initial mnﬁ%;fgns z{0) = xy, (&?)‘-h- e
PN\,
N
%
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CHAPTER &

MATRIX METHODS IN PROBLEMS OF SMALL
OSCILLATIONS

Differential Equations of Motion.’

The problem of small oscillations? (of conservative dynamical sys-
tems) about an equilibrium position concerns itself with the\selution
of the Lagrangian diffevential equations of motion in which“the kinetie
and potential energies are homogeneous quadratic forms, in the veloci-
ties and coordinates respectively, with constant deefficients. The
theory is approximate in that the constancy of tHe‘coefficients in the
kinetic energy and the quadratic type of the Petential energy are due
to approximations in the actual form of the" kinetic and potential
energies respectively. If, without loss ’g}nerality, we take ail the
coordinates of the equilibrium position'tg be zero, these approximations
are due to the assumed smallness, ofthe coordinates and velocities
about the equilibrium position. 3%

Let ) Ny

B dat
T-= ,éai%gf Zi (ay = a)
~& !

\ = b’y by = bj)

be the kinetic-aind potential energies respectively of our oscillating
system with f}.\degrees. of freedom. In view of what we have already
said, thg”q,;}lnd b; are constanis. We shall consider the case in which
the eq@iﬁrium point is stable, i.e., the potential energy V has a mini-
mumat'y' = 0. Now it can be proved that the positive definileness of V
js\® necessary and sufficient condition that (0, 0, --+, 0) be a stable
yeduilibrium point. ¥ is, by definition, positive definite if V = 0 for
2ll ¢ and ¥V = 0 if and only if ¢* = 0, Clearly the kinetic energy T
is positive definite in the velocities %‘

and

Lagrange’s equations of motion for our oscillating system are

ﬁ(?l')_ o -
g = "o G=L2 0w

. ... dg
on using the notation ¢ = & If we use the explicit form for the

24
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kinetic and potential energies, Lagrange’s equations reduce to the
systerma of n second-order differential equations
1) ayil = ~bug,

2ai

where we have used the notation § = %;:i— If we define two square

matrices f
A=lla;ll, B=[b;],
and the unknown column matrix

QW =1 ¢ |, O
then we can write our differential equations 5+1 of motion BS the one
matric differential equation ~\

d*Qt 4D
(5:2) A4 :ﬁg) = — B, m\‘

Since the kinetie energy is positive definite, if'cdn be proved that
the determinant | A | = 0. Hence it follows¢ffom our discussion in
Chapter 2 that the inverse matrix 43 exnsts* On multiplying both
gides of equation 5- 2 on the left by 4~ and remembermg that A4 =1,
the unit matrix, we obtaln the followmg equlvalent matric dlﬂerentdal-
equation ™

dQ(t
(53) dﬁ\) = OQ(t),
where C is the (constant)igqltare matrix ¢ = 4B,

To summarize, we baye the following result. If A and B are the
constant square malriges” of the coefficients of the kinetic and potential
energies respectwel;{ then the motion of our oscillatory system is governed
by the malric differentiol equation 5-3.

N
R N Illustrative Example
”aiequa,l masses, each of mass m, are connected by a spring with
elastic” constant & while each mass is connected to a fixed wall by a
spring with elastic constant k. ‘The kinetic and potential energies of

this two-degree-of-freedom problem are
_ (e d_f)“]
r-31(%) + (3

V= 5[({1‘)2 + @ + (¢~ 7],

t Recall the notations for matrices given in Chapter 1.
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where ¢! and g are the respective displacements of the centers of the
two masses “parallel” to the springs and are measured from the
equilibrium position in which all _three springs are pnstresseid. Hence
by a direct calculation from the kinetio and potential energies we find
that the matric equations of motion are

)

(5'4) dt = "'CQ(t))
where ' ‘
z}rf _ E N
m O\
M
m m P\
1t ¢ O
If we define the column matrix R(f) = :28 b)y % = R(#}, we
can write the second-order matric differential equation 5-4 as a first-
order matric differential equation R
) A
5-5) B0 _ 630,
where ' *, "
N\ g5
NSQ@) = || ¢
O ()
W\ 12(t)
and :
) 0 0 10
0 0 01
(5 ) “\:\ U __% _JE 0
SSHE E
Q b -2k
m“\ m 00
\ )

'The characteristic equation of the matrix U turns out to be
4k 2
M4 38 _ g
m m?
k .
Now - > 0, so that there are four distinqt pure imaginary character-
istic roots of U given by

5‘7 = —_— — . o
( ) hl m,?\z | m,haw m,M=__ __.ﬂ_l’_.
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Exercise

A shaft of length 21, fixed at one end, earries one disk at the free end and anothst,
in the middle. If x is the moment of inertia of each disk, and ¢, ¢? are the Tespec-
tive angular deflections of the two disks, then the kinetic and potential energies are

o (dY' | {aY
4G
o V = Z L@ + (a2 - 7]

under the assumption that the shaft has a uniform torsional stiffness 7. Find thé/ N
matrie differential equation of motion. Write this equation as a system ofstwo
first-order matric equations. Discusa the solutions of this system and then ﬂ{é -
tion of the disks. L@ }

\\
C*\
' 4 7/
b\
p
O

A\NO

L >
Ve \ud



CHAPTER 6
MATRIX METEODS IN PROBLEMS OF SMALL
OSCILLATIONS (Continued)

Calculation of Frequencies and Amplitudes.
Let us inquire info the pure harmonic solutions of our differential

equation of mation A
a*Q(0) R\,

{6-1) Tt -CQ®), Ke

wheve € = A-1B. We thus seek solutions of 6.1 of J:ypé

{6-2) Q) = sin (ot + YT, N

where « is an angular frequency, ¥ an arbitqiry phase angle, and I'
a column matrix of amplitudes. On substitGting 6-2 in 6-1 we obtain

_#sin (b + YT = <ot + Y)CT.
Hence a necessary and sufficient condition that 6-2 be a solution of
' 6-1 is that the frequency « and th&*corresponding eolumn matrix I of
amplitudes satisfy the matrizégiation
6-3) N - O = 0.

In order that there é@u\fst a solution matrix T' 2 0 of 6-8, it is clear
from the theory of gyatems of linear homogeneous algebrale equations
that o must be d characteristic root of the matriz €. Since (! = A—'B,
we verify immetiately the statement that
©5 W — C = A=A — B).

On F‘E@@iﬁg that the determinant of the product of two matrices is
equgl to the product of their determinants, we see that the determinant

”\~\ 1A“l(w2A—B)|=|A‘1! 1w2A—B[
\and hence, by 6-4,
[w2I—O]=|A—-I] Isz_BI

!But. i A*l'[ # 0, 50 that the characteristic roots of the matrix C are
identical with the roots of the “frequency” equation

(6-5) | "4-B | =0.
Stnce tfae kinetic and potential energies are positive definite quadratic
Jorms, it can be proved (see any book on dynamics such as Whittaker's)

that all f}fe .roots of the frequency equation are postiive, Hence all the
characteristic roots of the matriz € = A-1B qre positive,

23
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Since the potential energy is a positive definite quadratic form, it
follows that | B | > 0 and hence that B! exists. Therefore C-1
exists and is given by C~1 = B~14. On multiplying both sides of equa-
tion 6-1 by C, we obtain the matric differential equation

Q)
di?

where D = C—* = B~1A, Thisequation is obviously equivalent to equa-
tion 6-1. If we now proceed with 6-6 as we did with 6.1, we are led
to the equation \

1 O\
6-7) (;2 I- D)I‘ =0 _ ™
This equation ean also be derived by operating directly Wi‘bb, equation
6:3. It is clear from equations 6-3 and 6-7 that the)characteristic
roots of the mairiz D = O™ are the corresponding.‘?‘g}iprocals of the
characteristic roots of the matriz ¢. We shall {&}1 D the dynamical

(6-6) QM =-D

t]

matriz. N
Let us write 6.7 in the equivalent formy~\ "~
(6-8) I' = 2p[. O

The clagsical method of finding j:f;e: frequencies and amplitudes of
our oscillating system consists in j:‘[r‘si‘ﬁhding the frequencies by solving
the frequency equation 6-5, or equivalently in finding the characteristic
roots of the matrix € = ATE, and then in determining the ampli-
tudes by solving the system of linear homogencous equations that
corresponds to the m%t\rix equation 6:3. Such a direct way of
caleulating the freqnencies and amplitudes often involves laborious
caleulations. ¥oh\ dpproximate numerical calculations, the method
of successive g{:@*ﬁxﬁmatﬁons when applied to equation 68 greatly re-
duces the l%lbefious caleulations. This is especially true when only the
fundamental frequency (lowest frequency) and the corresponding
amplit@dés are desired.! We shall assume now that oll the frequencies of

¢ Ogerllating system are distinet. The method of successive approxi-
mations for equation 6-8 is as follows. Let Ty be an arbifrarily given
column matrix. Define

T = 2D
Ty = o?DTY

and in géneral
I‘r = CO?DI‘ r—1-
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By successive use of this recurrence relation we ean express I'; in terms
of Ty. In fact, we have

(6-9) Ty = (&8)7D'Ty,

where D7 is the rth power of the dynamical matrix D. Now it can be
shown that for large r the raiio of the elements of the column matriz
DT, to the corresponding elements of the column matriz DTy is approxi-
mately o constant equal to «f, the square of the fundamenial frequency w
of our fundamental mode of osciliation with distinct frequencies. {Fhe
matriz Ty i only restricled by the non-vanishing of B (see equq!@tg 6-11
" below). PR

The proof of this result is a little involved and makes use of the
Cayley-Hamilton theorem, a theorem t of Sylvester, Andia few other
theorems on matrices.? These theorems are instrutnental in showing
that, for r large encugh, the following approxiiaté equality holds:

':1\\3 ot
‘\ o
MEAY .
6-10 DT,y = L
(6-10) R W T N e T R N
,‘:::’ o’

where (@) M > A > - -3 ="\, are the characteristic roots of D, and
1. +$ )

hence Ay = 2 temguﬁf the fundamental frequency w; (b) the num-
1 N

bers o, &*, - - s 0 are proportional to the amplitudes of the funda-
mental mode of dsciltation; and (c)

70 .
(6-11), (4° R - Aol

In G‘Iﬁ the v, are the elements of the arbifrarily chosen column matrix
M];‘.,\"a,;;lc}l the Ay, ---, A, are n constants that are themselves obtainable
C by a successive approximation method.

Clearly, DTy is a column matrix. Hence the approximate formula

6-10 shows that for r large enough, and Jor arbitrarily chosen Ty, such

that R # 0, the column matriz D'Ty has elements proportional ’to the

amplitudes of the fundamental mode of oscillation, AIl this 1s subject fo
the restriction that all the frequencies are distinct.

On using equation 6-3 instead of 6-7, one can similarly obtain the

tF(4) = 3 FOw) el
- % . i
Z (hr)Gr, where G = T = ) and Ay, -+ +, A are characteristic
S
roots of 4, Bes the discussion in Chapter 3.
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greatest frequency and corresponding amplitudes of our oscillating
system. The intermediate overtones and cormesponding amplitudes
can be obtained by the above successive approximation methods
on reducing the number of degrees of freedom successively by one.
Any one interested in these topics will find the following paper by
W. J. Duncan and A. R. Collar very useful: “A Method for the
Solution of Oscillation Problems by Matrices,” Philosophical Magazine
and Journal of Science, vol. 17 (1934), pp. 865-909. By approzimating
oscillating continuous systems, such as beams, by oscillating system
with a large but finife number of degrees of freedom, the Duncan-Collgr
paper shows how the methods of this chapter are applicable in sqfwng

oscillation problems for continucus systems. O

N
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CHAPTER 7

MATRIX METHODS IN THE MATHEMATICAL THEORY
OF AIRCRAFT FLUTTER

In recent years a group of phenomena known under the ezption
“flutter” has engaged the attention of aeronautical enginegrs, - The
vibrations taking place in flutter phenomena ean often lead\t6-oss of
control or even to structural failure in such aireraft parts as wing,
aileron, and fail. Such dangerous situations may.@rise when the
airplane is flown at a high speed. It is of the gréatest practical im-
portance therefore so fo design the plane asde’have the maximum
operating speed less than the eritical speed ab ‘which flutter occurs.
Unfortunately experiments in wind tunnels’are idealized and difficult,
and actual flight testing is obviously ¥ighly dangerous. It is here
that mathematics enters the stage at’a most opportune moment.
Although the results of mathematici} theories of fluttor are now being
applied in the design of aircraff*the need for an adequate mathe-
matical theory is becoming erifeal. There is no time in this brief set
of mathematical lectures 6 deal adequately with the present simplified
mathematical theorieﬁ{c’)?‘ the mechanism of flutter. We shall only
give the magric formifer the equations of motion and say a few words
about the approfimate solutions with the aid of matrix iteration
methods, &

The vibrations of an airplane wing and aileron can be considered as
those Q{:%’mecha.nical system with fhree degrees of freedom: the bend-
ing agll'}\ isting of the wing accounts for two degrees of frecdom, and
therelative deflection of the aileron gives rise to the third degree of
) ..{rgbfi?m. Not only is the system non-conservative, but there is the
additional cm?rlplication of damping forces leading to terms depending
on the velocities in the equations of motion. The differential equations
of motion are of type

i {f 7
@ D O ‘%l + cﬁ%@_ +big’()) = 0,

8 system of three linear differentia] equations in the three unknowns

g, ¢*(), £{f). Since there are three degrees of freedom, all indices

have the range 1 to 3. The constant coefficients @ by, ¢ are eom-

puted from a large number of aerodynamic constants of 0:11' aircraft
42
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structure; see T. Theodorsen’s ‘‘General Theory of Aerodynamie
Instability and the Mechanism of Flutter,” N. A, (', A, Report 496,
for 1934, pp. 413433, especially pp. 419-420. Now the general
structure of equations 7-1 differs from the equations of motion of the
preceding two chapters in that b; = b;; (giving rise to a non-conserva-

tive system) and in the presence of the linear damping terms c‘?dqt;ft)'
If we define A= ay |, B=[8; |, C=1el QD=1 O I,

then the equations of motion 7-1 can be written as the one matric
differential equation

72 4 dQ() A

Q)

g TOTg THO= o\
in terms of the three known constant matrices 4, B, C, anél the un-
known column matrix Q(f). As we arc interested in sma,ﬂ dscillations
around an unstable point of eguilibrium, it is to bekxpected that
complex imaginary frequencies will play a role in the work.

Since A arises from the kinetic energy, 4= exl‘sts and hence 7.2 is
equivalent to ‘..\

[2 dot ;
(7-3) d—g&z = A0 —— Q() 1BQ(£)
We can replace the one second—ordﬁr dlﬁerentaal equation 7-3 by an
equivalent pair of fwo first-order difftrential equations with the ¢olumn
matrices Q@) and BE() as uleowns

5@'&:}%@)

(7-4)
{jt(t) ~A-LBO() — A-CR().
Define th,@c}!umn matrix of six elements
M: * ) R(t)
and\tHe constant square matrix of six rows
0, I
—A-B, —AC

where O and T are the three-rowed zero and unit matrices respectively.
Then equations 7 -4 can be written as the one first-order matric differen-
tial equation

(7-6) 480

R US(®.
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We are led therefore to consider selutions
S =é"A (4, a constant column matrix of six elements)

of 7-6. 'This obviously leads us to the equation
@7 W -Da=0,
where I is the six-row unit matrix. To solve the problem we must
get good approximations to the values of A and the matrix A that will
satisfy 7-7. The matrix iteration method for small oscillations of
conservative systems can now be applied with some modifications made
necessary by the fact that the possible values of X in 7-7 are in goneral
complex imaginary. If Ay, A, -+, A, are the characteristit \egots of
the matrix U lexicographically arranged so that their motuli t are in
descending order, i.e., | A | > | Az I R ] ?3;”{ , then the
characteristic oot A, with the largest modulus can bé pbtained by the
methods of the previous chapter. Some further@ids in computation
of the real and imaginary parts of complex ehdracteristic roots are
given on pp. 148-150 and 327-331 of the Fm\zer-Duncan-Collar hook
on matrices. A more readable and selicontained account is given in
the paper by W. J. Duncan and A¢ RT Collar entitled “‘Matrices
Applied to the Motions of Damped Systems,” Phil. Mag., vol. 19
(1935), pp. 197-219. An illymipating discussion of o specialized
flutter problem with fwo degroes,of freedom is given in a 1940 book by
Karmén and Biot, Mathemagical Methods in Engineering, pp. 220-228.
It would he interesting apd'instructive to solve such specialized flutter
problems with the aidkof‘the matrix caleulus.

Another useful method of solving flutter problems is the combi-
nation of matyix methods and Laplace transform methods. The
Laplace trgnsfprm of a function x(¢) is a funciion Z(p) defined by

§ } z(p) = f e?'z(t) di.
N\ ¢
If eng'is willing to omit the proofs of one or two theorems, the whole
¢ Laplace transform theo

e : ry needed does not require one to be conversant
with the residue theory of

elementary treatment of Lapl
Applied Mathematics by
methods given there can
to apply directly to the
problems. A good table
ical or electric methods ¢

complex variable theory. For such an
ace transforms see Operational Calculus in
Carslaw and Jaeger, Chapters I-III. The
be immediately extended in the obvious way
matrie differential equations 7.3 for Autter
of Laplace transforms together with mechan-
an cut down the labor of flutter caleulations
1 The modulus of g complex number z =

e+ V 1yi i
deined by [¢] @ Vi o ¥ is denoted by |z| and is
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materially, Unfortunately there is no time to take up these matters
in detail in our brief introductory treatment.

Exercises

1. Show that the matrie differential equation 7-6 for flutier can be written as
S8y = U a8,

174
where I/%, the inverse matrix of ¥, is given by the six-row square matrix
g1 || -BC B
I 0 O\

2. A modcl airplane wing is placed at a small angle of incidence in a umform air
stream. The threc dogrees of freedom are the wing hending, wing twist, aﬁd aileron
angle meagured relative to the wing ehord at the wing fip. When t.h(,* wind speed
I8 12 feel per second, the matrices for the differentisl equations Qf\ﬂ'utter are as
follows. The data arc obtained from R. A. Frazer and W, J, Dajean, “The Flatter
of Aeroplane Wings,” Reporis and Memoranda of the Aeronaniieal Reseamh Com-
mitfee, No. 1155, Augnst, 1928, \\

176 0.128 28§
A= 0128 000824125 ¢0413
2.89 00413 _\ 0.725

121,042 1.89Y  15.9497
B-f 0 0027 00145
11,5097 “0.364 154722

76.;838 0245 210
¢ = qﬁ%g 0.0104 0.0223
0.0756  0.658333

(= ~ﬁ1atrix of damping coefficients.

Show that & .
PRLss 0.170883  1.06301 —0.741731
'\ W A1 = 106301 176,433 —14.2880
0741731 -14.2880  5.14994
and that the 'matric differential equation for flutter is
Y% B0 _ uso,
d

where the “Autter matrix” IF is given by

| 0 0 0 1 0 0

0 0 0 0 1 0
= 0 0 0 0 o 1 )
-11.8502 -0.08168 873526 —0.888080  0.003153  0.105747

41 4569 —1.57195 201.554 —3.62604 —1.01517 3.23940
284464 -0,0864931 —67.6433 2.91008 —0.050016 -~1.51412

For the lengthy details of the caleulstions of flutter frequencies and amplitudes
8ee the Phil. Mag. 1935 paper by Duncan and Collar.
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More recent developments in aircraft design require an extension of
the flutter theory to handle four-degree- (or more) of-freedom problems
in which the motion of the fab defines the fourth degree T of freedom
with generalized eoordinate ¢*. The aerodynamic forces and moments
are obtained theoretically in accordance with T. Theodorsen’s and
L. E. Garrick’s investigations and not from wind-tunnel data. It s
for this reason that the coefficients in the differential equations of
motion will be in general complex. See Fig. 7-1. The four differential

equations of motion are of the form { ~
b dyt .
(7-8) iy + 0y = + 0@’ =0 O
var " Ydt ! ’ PR
Wing dlastic axis 5 Alleron hinge Tab hgng'g ' '
q

¢ \‘ Fic. 7-1.
wherg.’a\ll‘ the indices, in coniradistinetion to 7-1, have the range 1 to
4 atich the coefficients a;;, by, and c;; are in general complex.
~ The flutter velocity » appears in general in the coefficients ¢; and by

3
and is replaced by the quantity T where b, «, and k are the airfoil

semi-chord, flutter frequency, and the flutter parameter & — 2 respec-

tively. This yields a system of four linear differential equat?ons 7-8

T In accordance with the flutter notation i i
oo polagce wth, th used in this country, ¢! = b, = o
forie;ll‘l;em{llffrentml equations of n}otion and the contributions of the aerodynamic
ond cments to the coef!:lments of the differential equations for the four-
degree-of-freedom problem are given in the Douglas reports.
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in whieh ¢;; and by are expressed as functions of the flutter frequency o
and not of the flutter velocity ». If one then considers solutions of the

form

¢ =g (i=V-D
of the differential equations, one is led to a system of four linear alge-
braic equations with complex coefficients, some of which are functions
of w and the structural damping coefficients g;;. The damping coeffi-
cients g,; are defined by

F‘f= vV —1 ga'jK.,;Jq’. (gﬁ=0 if 3'?5_?.),

where F'; is the damping force in the g*th direction and the Kj; sm;the
spring constants, Upon obtaining the characteristie roo}:s;:bf the
mairix of the Iincar algcbraic cquations by matrie iteratignimethods,
one ultimately finds the flutter velocity » as a function/éf the flutter
frequeney o and the structural damping coefﬁeienfﬁ“bg. Flutter is
likely to occur if the struetural damping coefficients g; from the
pure imaginary part of the characteristic root ,eﬁeeds 0.03, provided
that no extraneous damping deovices are useds " The algebraic equa-
tions are so arranged — and this constitgtey’ an important aspect of
the development in that it lends itself tenatric iteration procedures —
that the characteristic roots are of the,form

¢, LN S
p=—tig - @=V-1,

where ¢ is some constant cQs the flutter frequency, and g is a structural
damping ecefficient. N

The flutter analysh is attempting to approximate the actual flutter
characteristics of (the airplane by reprcsenting them by as small a
oumber of deg{é%"cnf freedom as possible. The design of faster and
larger aireraft.requires the consideration of a larger number of degrees
of freedomi;:so as to make, the flutter analysis an adequate approzimation.
Whl?}} anany degrocs of freedom are required to represent the futter
chdtagteristics of an airplane, the need for matrix methods becomes
acute. Matrix methods t also serve to improve the theory of the
mechanism of flutter. \

 Matrix methods are also used in treating other phenomena related to futter.
Bee Douglas reports,

QY



CHAPTER 8

MATRIX METHODS IN ELASTIC DEFORMATION
THEORY

Although the tensor caleulus is the most natural and powerful mathe-
matical method in the treatment of the fundamentals of elasti€\def-
ormation of bodies, the matrix ealeulus can alzo be used to advantage
in furnishing & short and neat treatment. This chapier i) purely
introductory and suggestive. « M

Let 2 medium be acted on by deforming forces. The position of the
medium before and after deformation will be calléd the initial and
final state of the medium respectively. Let alya%.&® be the rectangular
cartesian coordinates of a representative particle of the medium in the
initial state, and 1, 2% 2° the rectanguia((ﬁrtesian coordinates of the
corresponding particle in the final gidfe) " Then the elastic deforma-
tion is represented by particle—to—paftiéie transformations

(8-1) 2 = {8, o, ).
Hence by the ordinary d.iffeafefﬁﬁal ealeulus
(8-2) m<“ det = f% da,
where O '
‘ O\ fin ofild’, o* %)
9, i~ a ai

The classi(;iljsﬁeory of elastic bodies assumes that the deformations 8-1
are “infinifesimal”’ Such crude approximations have been found
inadgc\kuate in some investigations on thin plates and shells.j As @
fggljlj. the finite deformation theory is beginning to be used in engineer-
. ingproblems. In what we shall have to say we shall make the rostrie-

tive assumptions of the classical infinitesimal theory only toward the
end of the chapter.

Let A and X be defined as the column matrices of three elements:
A=la | and X< |,
Similarly the differential matrices are dA = || dgt = :
Define the square matrix F by “ I, ax - dat ]

F=|s1,

1 Bee the Kdrman Anniversary Volume, Californi :
. s ornia, In
for VATIOUS papers a‘nd Ot!her referen@eg_ Stltutre Of TeGhBOIOSy, 1941)
38
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i.e., the matrix of the partial derivatives of the deformation 8-1. Then
the differential relations 8-2 can be written in matric form as

@-3) dX = F dA.
DerinrtioN.  The adjoint M* of a matrix M is the matrix obtained
from M by interchanging the rows and columns of M.

Thus A* and X* are row matrices while

E}xl oxr 0P
aal gc;? dat

Fr = a_xl, éﬁz, b_:ﬁ . '\:\
dat 0o O O
bx‘ bxz 5933 (J}“ '
ba3 2 O

It can be proved by a routine procedure thaf (sz) = MM
In other words, the adjoint of the product of Jwo matrices is the
product of their adjoints in the reverse order. \F{} example,

dX* = dA*F*
Hence the square of the dlﬁerenmal lme eiement in the final state of
the medium will be
(8-4) dsk = dei*F*F 4
since N\
dsk = (do') R Nda®)* + (do')* = dx* dX.
By a direct computation®ib can be shown that the matrix

(8-5) N PR = | oy |,
where \ \

{; - 3 axk axk
(8-6) § Vi = 13&‘ 20

Note tha’b 1{@, ¥ Thisis expressed by saying that F*F ig & symmelric
matm
The square of the differential line element in the initial state is

(8-7) ds?=dA*dA (= dA*] dA, where I is the unit matrix)
and hence with the aid of 8-4 we find the formula

{8-8) dsg — dsi = dA*(F*F - I) dA.

On defining the matrix, called the deformation or siratn molrig,.
(8-9) = 3FF - I,

we find '

(8-10) dst — dsi = 2 dA*H dA.
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Now, if ds? = dsj for all particles of the initial state and for all
dA, we have, by definition, a rigid displacement of the medium from
the initial state to the final state. A glance at §-10 shows that a
necessary and sufficient condition that the change of the medium from the
initial to the final state be @ rigid displacement $s that the strain matrix
H be a zero madriz. In other words, when H = O, the medium is not
deformed or strained but is merely transported to a diffcrent po-
sition by a rigid displacement. This property then justifies the
terminology “strain matrix H” since H measures, in a sense, the
amount of strain or deformation undergone by the medium. It i clear
from definition 8-9 that the strain malric H is @ symmelrig Wadiriz.
Let ;; be the elements (more commonly called componentsimelasticity
theory) of the strain matrix H, ie, H=| 25 || - O using result
85 and definition 89, we gee that R4

YE2
n"”z =100 aaf_j‘f: 7

where N\
sy=1 1 (3]
=0 ifey#j.
~\
3
U=sX-A
N
S Final state
O 3 © Fre. 81,
~ I)et- = i — o', then '
A W
od 0@ T
Define the matrix
t
131
da
and obtain the relation
FaV4+I

Hence, from definition 8-9, for the strain matrix H we obtain

H=3{(V+DV+I) 11
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Expanding the right-hand side gives
=H{V*V +V*1+ V]
In the classical infinitesimal theory of elasticity only first-degree terms

infinitestmal theory of elastic deformations, the strain mairiz is given by

H=3V*+7V)
in reclangular cartesion coordinates. In other words, the componenta
mi; of H are given by the familiar O\
e (aw bw) o
v o0 Oal P

e {
From the symmetry of 9; there are thus in general ﬁ{ Estlnct com-
ponents of the strain matrix in three dimensions W}z\“l‘g there are three
components for plane elastic problems.



PART II. TENSOR CALCULUS AND
ITS APPLICATIONS

CHAPTER 9
SPACE LINE ELEMENT IN CURVILINEAR ~
COORDINATES .
2 A
Introductory Remarks, O

The vague beginnings of the tensor ealenlus, or abselute differential
calculus as it is sometimes called, can be traced back more than a
century to Gauss’s researches on curved surfafes. The systematic
investigation of tensor calculi by a considerahle' mumber of mathema-
ticians has taken place since 1920, With éw éxceptiong, the applica~
tions of tensor caleulus were confined t3dhe general theory of relativily.
The result was an undue emphasis, onthe tensor calculus of curved
spaces 28 distinguished from the @e’risor caleulus of Euclidean spaces.
The subjects of elasticity! andsdiydrodynamics,? as studied and used
by aeronautical engineers, are'dtveloped and have their being in plane
and solid Euclidean spacef Nt is for $his reason that we shall be pri-
marily concerned withEuclidean tensor caleulus in this book. We
shall, however, devote: two chapters to curved fensor caleulus in con-
nection with thé Yundamentals of classical mechanics® and fluid
mechanics. W\

It is worthy of notice that the tensor caleulus is a generalization of
the widély Studied differential calculus of freshman and sophomore
famed In fact, as we shall see, a detailed study of the classical dif-

fal;énﬁal caleulug along a certsin direction demands the introduetion
\m?ﬁi the fensor calculus.

Notation and Summation Convention.

Before we begi.n _the study of tensor caleulus, we must embark on
some fc:rmal p_rehmmaries including some matters of notation.
Consider 2 linear function in the n real variables z, ¢, 2, « -+, W

©-1 o+ By + vz 4 -+ hw.
Define

ai=€¢,ﬂz=ﬁ,ﬂa='}' ...’a“:A,
(9'2) a:ly:x} ﬁ:y’ﬁ‘-_—z:

42

s, T =W,
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We emphasize once for all that «%, 2% .-, z* are » independent, vari-
shles and not the first » powers of one variable 2. In terms of the
notations of 9-2 we can rewrite 9-1 in the form

9-3) auE! + Gox? + agr® 4 - f gt
or as
(9-4) . Zam".

i=1

The set of n integer values 1 to = is called the range of the index ¢ in,
9-4. A lower index 7 as in a; will be called a subscript, and an uppex
index ¢ as in ¢ will be ealled & superseript. Throughout our work e
shall adopt the following useful summaiion convention: O

The repelition of an index tn @ term once as a subscript cm,d cmce as a
superscript will denote o summabion with respect {o that mdea: over s
range. An index that is not summed out will be calleel’a}'ree indes.

In accordance with this convention then we shall¥write the sum
9.4 simply as PN

PAL

(9.5) axt, o

A summation index as ¢ in 9-5 is called a, dummy or an umbral, since it
is immaterial what symbol is used for She index. For example, iz’
is the game sum as 9-5. All thisi Is anaiogoub to the (umbral) variable
of integration = in an integral

’fﬁ@m

Any other letter, say th. eould be used in the place of &. Thus

j?@h@=j¥@nm

Aside frotl} compaetness, the subseript and superscript notation
together Wwith the summation convention has advantages that will

become _&vident later.
A4 further illustration of the summation convention, conmder the

square of the line element

(9-6) dst = da? + dy? + dif

in a three-dimensional Euclidean space with rectangular cartesian
coordinates z, y, and 2. Define

9-7) Pz, =y P=2
and

Sn=20n=20n=1
9.
( 8) {312=621=613=531=623=5&=O¢
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Then 9-6 can be rewritten

3
(9-9) dst = Y (Y,
or again .
(9-10) ds? = §; dy’ dy’

with the understanding that the range of the indices ¢ and 7 is 1 to 3.
Note that there are two summations in 910 ene over the index 7 and
one over the index j. ~
Let f(z', 2% ---, 2*) be a function of » numerical variablés!, 22,
- -+, z*; then its differential can be written O\
of . O
df = o dz G\

7N
S D

with the understanding that the summation conventionhas been cxtended
- 80 as to apply to repeated superscripts in differenteation formulas. We
shall adhere to this extension of the summatipi convention.

It is worth while at this early stage todive an example of a tensor
and show the fundamental nature of {such a concept even for ele-
mentary portions of the usual differential and integral caleulus. 'This
will dispel, T hope, any illusions ¢ommon among educated laymen
that the tensor caleulus is ay,x;éfy “highbrow” and esoteric subject

and that its main applications are to the physical speculations of
relativistic cosmology. <“

Euclidean Metric 51;’0;'.4

In the following,example, free as well as umbral indices will have

the range 1 $0@as we shall deal with & three-dimensional Euclidean
space. th.\'“‘

(9-11)&;\“ xt = filyl, o, o)

be ,q.fltransforma-tion of coordinates from the rectangular cartesian
mgo;:'rdmates ¥, %% ¥* to some general coordinates z', 2% 23 not neces-

§a:rxly. rectangular cartesian coordinates; for example, they may be

sphenf:al coordinates. The inverse transformation of coordinates to

9-11 is the transformation of coordinates that takes one from the

;c;c;rdinates ' %, 2% to the reetangular cartesian eoordinates o v o

(9-12) Yt = g3, 2, 2%

be the inverse transformation of coordinates to 9-11,
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Example

Let ¢!, v% v be rectangular cartesian coordinates and zt, 2% o
polar spherical coordinates. The transformation of coordinates from
rectangular cartesian to polar spheri-
cal coordingtes is clearly

#= VPt GF+ O

N ¥
£ (v @+ (yz)z+<ya)ﬂ)

\ ) {
2 £\
2 = tan™* ?’f) ! NS

y Fra. 9-1™

The inverse transformation of cocrdinates is given bymj\‘ ’

gt = 2l sin 2? cog 3B

1? = z' sin ¥ gin 23 ':.'\\,

¥ = ateosat (N
The differentials of the transformatwn £unct10ns in 9-12 may be
written

RN

(9-13) ay’ = f;-'.’i;
On using 9-13 we obtain, asfts}' an evident rearrangement, the formula
3oyt oy
9-14 {ds? = * dz®,
(8-14) S = Z_E 205 28 O

If we define the/fimetions g.g(#!, 22, 2%) of the three independent vari-

ables 21, x2, v{‘by
oyt oy’
(9 15) gaﬁ(xls xz? xa) Z

e

We\eé that the square of the line element in the general 2%, 2%, x® coordi-
nates iakes the form

(9-16) 45 = gop du® 0o

This is a homogeneous guadratic polynomial, called quadratic differen-
tial form in the three independent variables da!, dz?, dz

Caution? Once an index has been used in one summation of a series
of repeated summations, it cannot be used again in another summation
of the same series. For example, ga, d2* dz” has a meaning and is equal
10 gu{da')? + goo(da®)? + gw(dz®)?, but that is not what one gets by
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carrying out the double repéated summation in 9-16. Expanded in
extenso, 9-16 stands for

9.17) ds® = gul(dz)? + 2g1 dot da® + 2013 dz’ dx?
® & gea(da?)? -+ 2gs da? d2® + gas(da®)®

The factor 2 in three of the terms in 9-17 comes from combining terms
due to the fact that g, is symmetric in & and §; & glance at the defi-
nition 9-15 shows that

o = Use ior each « and B ~
and hence

N

Jiz = {21, J1s = ga, oz = Gao- '\.\

Now let &, 72, # be any chosen general coordinates, not‘necessarﬂy

distinct from the general coordinates #?, 22, 2. Let )

(9-18) ©i = Fi(3, 22, ) AV
be the transformation of ecoordinates from the genéral coordinates &,

7%, #* o the general coordinates z!, =%, % Cl@ﬂy the differentials dz®
have the form \

3

a}
(9-19) ax = 22,
ba:~
Define the functions §,,(z", x2 a:”)“ of the three variables £, 7, # by
dz™ 0P
(9-20) Fs(Z, 952\ x"') = fap(®, &%, & )@ 25

Then, if we uge 9- 15\&1 9. 16, we obtain, with the aid of the definition
9.20, the formula\

(9-21) AN/ ds? = §.,,(3, &, 8% dz” d,
which glve\'fhe square of the line element in the T4, 22, @ coordinates.
We hayethus arrived at the fellowing resuls:
If &40, 2 and 7, 2, B are two arbitrarily chosen sets of genemi
cqotdmates and if the transformation of coordinaies 9-18 from the ©'s
“ta™the s has suiloble differentiability properties, then the coefficients
gaﬂ(:t‘ %, o) of the square of the line element 916 in the 2!, 22, 2° co-
ordinates are relafed to the coeflicients §.5(3', 3 &) of the square of the
line element 9+ 21 in the coordinales B, 22, & by means of the law of trans-
Jormadtion 920,

In each coordinate systema with coordinates zl, z?, 28, we have a
set of functions g,s(z?, 22 2%), ealled the components of the Enclidean
metric tensor {field), and the componcnts of the Euclidean metric
tensor in any two coordinate systems with coordinates 2t a2, 28 and

g— 232 T respectively are related by means of the characteristic rule
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An analogous discussion can obviously be given for the line element
and Euclidean metric tensor of the plane (a two-dimensional Eu-
clidean space). We now have two coordinates instead of three so
that the range of the indices is 1 to 2. For example, the [ine elements
ds in rectangular coordinates (', y*)

ds® = (dy')* + (dy*)?
will become
45" = guple?, 2%) da® da

in general coordinates (2%, 2?), and the components of the plane Eis

clidean mefric tensor g,s(z!, 2% will undergo the transformationg \.Jy
e A\ N
o dz® D « N
Gy T2 = Gop(®', 2°) 7 5 O

(v
Exerciges N

1. Find the components of the plane Euclidean meigni.(\ténsor in polar eoordi-
nates (z!, 22) and the corresponding expression for thc{fne element.

o= Vir sy, NV

i = 7l gos 22, : e
¥ = ' sin 23, and £ = gin-1 (—__’_y = ) y® A D
(yi)i :'k I.ysz ry?///
Hense . } s
2 Lok, O AR 2
e, oty = 3 L U, W A |
am102* ! 2ldg™ 0z 0z! "
.inx
Therefore : \\ Fre. 0.2

gu(l, 22) = cost zf Bain? 2? = 1,
gulh, 2%) = (2g82) 2t sin 2?) + (sin 2*)(xt con 2®) = 0 = galt, 27),
gulz!, 22) ==,(—;c“1 ain 22 + (2! cos 2)? = (V)2

The line element 3= gop dz™ de in polar coordinates (s, 2%) is then

O ds? = (dal}® + (29)Hdz")?,
which in.the Usual notation is written
<‘;" ds = dr? 4 72 det.

2. Find the components of the (space} Euclidean metric tensor and the expres-
sion for the line element in polar spherical coordinates.

Answer.
gula?, 22, o) = 1, gl 28, 2%} = (2%, gus(@, 2% @) = (@ Pi(sin 27
and all other gyi(z, a2, 4%) = 0, so that
dit = (A1) + (et + (21 P(sin a7 (de)"



CHAPTIER 10

VECTOR FIELDS, TENSOR FIELDS, AND EUCLIDEAN
CHRISTOFFEL SYMBOLS A

The Strain Tensor. < \:}‘

+  Another interesting example of 2 tensor is to be found S elasticity.
Let at, @2, a® be the curvilinear coordinates of a reprgseﬁ%@tive particle
in an elastic medium, and let 2%, 2% «° be the coor@;’aﬁcs of the repre-
sentative particle affer an elastic deformation of(the medium.

{a,a%2% A\
Medium i N r : 3 Deﬁrmed wedium
. img Fra 10-1,
e ¢ LN/
N\

(10-1) SN df = o dot i

be the square of the line element in the medium, and let

10-2) ds? = g da® do®

!)e tﬁegm'fesponding square of the line element in the deformed medium

m@g by the elastic deformation whose equations are
»\:@.D ) 3} xt= fi(alr 0’21 a's)'

’In.tem of the coordinates =, 2% «* the line element 10-1 can be
written

(10-4) dsg = hog da™ daf,
where

10-5 _ da” dal
( ) biog = c‘rﬁaé S

On subtracting corresponding sides of 10-2 and 10-4 we find
(10-6) dst — dsf = 2,4 da® da®, |
48



SCALARS AND VECTORS 49
if we define e,5 by

(10'7) €ap = %(Q’a.s - hﬁﬁ)'

Now e,z are functions of the coordinates 2%, 22, x3 If then we caleu-
late ds* — dsj in any other curvilinear coordinates &, 2% 2%, we would
obtain by the method of the preceding chapter

ds? ~ dsy = 2%, dF* di,
where
¥
10-8 G = o
(10-8) fof T o 0 \
KGN
Because of the characteristic law 10-8, e, are the components a4
tensor (field), and because e, in 10-6 is & measure of the strain of the
elastic medium, e, are the components of a strain fensop,\ We shall

have a good deal to say about the strain tensor in some ‘ef the later
chapters, \/

Scalars, Contravariant Vectors, and Covariant Vé;}?ors.

We shall now begin the subject of the téfsbr caleulus by defining
the simplest types of tensors. An object is.éalled a scalar (field) if in
each coordinate system there conequﬁﬂs a function, called & com-
ponent, such that the relationship betsden the components in (zt, 22, 2%}
coordinates and (&, #2, %) coordingtes respectively is
(10-9) s(at, a2 @Y = 8(&, 2, 7).

An object is called a ?Sijm;am'ant vector field (an equivalent termi-
nology is contravariant¥ensor field of rank one) if in each coordinate
system there correspohds a set of three functions, called components,
such that the relafq'iohship between the components in any two coordi-
nate systems iggiven by the characteristic law

# —_
3

& \ _ ax
(10-10) B 22 3 = 20, 2% 2% -
AN ox

Pﬁn\z)‘lj"jeet is called s eovariant vector field (an equivalent terminology
is covariant tensor field of rank one) if in each coordinate system there
corresponds a set of three functions, called components, such that the
relationship between the components in any two coordinate systems
Is given by the characteristic law

o

A
(10 11) ﬁi(:il: jz} 5;3) = "?n(xl, xz} xs) b—a‘;-‘.

It is to be noticed at this point that the laws of j;ransff}rmation
10-10 and 1011 are in general distinct so that there is a difference’
hetween the notions of contravariant vector field and covariant vector
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field. THowever, if only rectangular carfesian coordinafes are con-
sidered, this distinction disappears. If is for this reason that the
notions of contravariant as distinguished from covariant vector fieids
are not introduced in elementary vector analysis. That the char-
acteristic Jaws 10-10 and 10-11 are identical n rectangular cartesian
coordinates follows from some calculations leading to the result
ozt 0"

(10-12) o - on
between rectangular coordinates (¢, 2% 2°) and any other rectanpular
coordinates (&, &, &) O\
Tensor Fields of Rank Two. . O

In all three objects — scalar fields, contravariant ecor fields, and
covariant vector fields — there are components in¢aby two coordinate
systems, and the components in any two cootdinate systems are re-
lated by characteristic transformation lawg\“We have to congider
other objects, called tensor fields (of varipli®sorts), whose components
in any two coordinate systems arc xelated by a characteristic trans-
formation law. To shorten the statéments of the following definitions
we shall merely give the characteristic transformation law of com-
ponents. A\

Covariant Tensor Field of Rank Two,

A oz ozt
10-13 Lea( BT, &%) =, (2, 2% o) -
( ) (@ m & ) Mi(x 5T ) a ;f;a a’jﬁ
Contravariant\’feiisor Field of Rank Two.
" FeYrilte o

1014 \~ FBEL 52 1) = (gl R 2) e e

( \)’\’ (x$x!:r’) ¢ (xrx:x)ax)\amn

Mixéd Tensor Field of Rank Two. |
et oo o az" ozt

(10-15) (3, &, %) = B, o8 29 P b

Again because of relation 10-12, the difference between the above
three types of tensor fields is non-existent as long as one considers
only reclongular carlesian coordinates.

It is Wf)l‘f:hy of notice at this point that the indices in the various
characteristic transformation laws tell a story which depends on
Whethf_:r the index is a superseript, ealled contravariant index, or &
subsecript, called eovariarit tndex.

' Belfore pmf:eedi{:ng any further with the development of our subject,
it would be illuminating to have some examples of vector fields and
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other tensor fields. Perhaps the most important example of a contra-
variant vector field is a velocity field. Suppose that the motion of a
particle is governed by the differential equations
a = E'i(xls x‘?., xa)}
where £ is the time variable. If & = fi(z', 2% z®) is & transformation
of coordinates to new coordinates Z¢, then

dzt  dxide’  dFt

i __x__ - _% Er(xl’ :.':2, ms)_
Thus the components £(3!, 2%, &°) of the velocity field in the #* co
ordinates are related to the components £(z", 2% 2?) in the z* ceordi-
nates by the rule . QO

-, a‘i . PR

E“(ﬁlx 5;2; 5;3) = %E:(xlx x2: xa)x o\

¥ 227

ey . . N\
which is precisely the confravariant vector field rulaS)

0
If s(a%, 2% 2°) is a scalar field, then the “gradient” 2)—;" are the com-

ponents of a covariant vector field, An impertant example of a scalar
field is the potential energy of a moving .p&rtiele.

We gave two examples of a covarianh tensor field of rank two: the
Euclidean metric tensor and the Qstfaiin tensor, A little later in the
chapter we shall give an example of & contravariant tensor field of rank
two, the g** associated with the*Euclidean metric tensor gg.

As an example of a mixed ‘tensor field of rank two, we have the
mixed tensor field with comstant components

N =0 if a=p
\ =1 if a=p

in the 2* coordirigbes. But
N B e - o o8
R\ oNT T “azf oz
PR o ozt oz
O "o
Hence

@) =0 i axf
=1 1f a=8
In other words, not only are the components constant throughout space,
but they are also the same constants in all coordinates.
One of the first fundamental problems in the tensor calculus is to
extend the notion of partial derivative to the notion of covariant deriva-
tive in sach g manner that the covariant derivative of a tensor field is
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also some tensor feld. It is true thaf, if one restriets his work only
to cartesian coordinates (oblique axes), then the partial derivatives
of any tensor field behave like the components of a tensor field under
o transformation of cartesian coordinates to carfesian coordinates.
For example, suppose that (2%, 2% £°) are cartesian coordinates and
(!, 2, &) arc any other carfesian coordinates; then it ean be shown
that for suitable constants ¢; and o

(10-16} it = al + &

is the transformation of coordinates taking the cartesian coordingfes
z to the cartesian coordinates '. Hence

O\
ai‘: M '\ ”
(10-17) o = % RS
& set of constants, and so N AN 2
10-18 o O
(10-18) dgi dat .

Now, if £i(zl, 2%, 2%) are the components pﬂ%'contravariant tensor
field, then AN

(10-19) B(@, 2, 8) = £y 35 2)

OFt
S la
On differentiating correspondingeides of 10-19, we obtain

% o 2z

10-20 = AN o _.

(10-20) o~ 00 0 | ° 0" 0P OB
But both z¢ and &' ave eartesian coordinates. Hence on using 10-18
in 10-20 we obtain ()

N\ oF O 0z O
10-21 CH oc _ % 9 9
(10-21) @ o5 o oz o

3

' O ' 3 .
which 5@‘5@\5 that the partial derivatives -ag—s behave as though they were the
o\ 2

??\mpbﬂéms of a mized fensor field of rank two and this under a irons-
\@miatwn from carlesion coordinates to cartesion coordinates.
The presence of the seeond derivative terms in 10-20 in eurvilinear

23

. . e}
coordinates z* shows that the % are not really the components of 3

oz?
tensor field. S_o the fundamental question arises whether it is possible
to add corrective terms €% (all zero in cartesian coordinates) to the

X

partial derivatives g—iﬂ 80 as to make
@

: o e
(10-22) 40
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the components of a mixed tensor field of rank two for all contravariant
fields £*. The answer to this question is in the affirmative, and the
possibility of the eorrective terms depends on the existence of the
Euclidean Christoflel symbols.?

Euclidean Christoffel Symbols.

We saw in the previous chapter that the element of are length
squared in general coordinates takes the form

(10-23) ds® = ga(2, 2%, 2%) da® da®,

where, in the present terminology, g.s are the components of a covarts
ant tensor field of rank two, called the Euclidean metric tensor. (Now

it ean be proved that the determinants® O
gllj ng’ Q’ls .z :"
{10-24) g=|6u gn gu|*0 R4
Fa; Gs2 G \/
Define

o = Cefactor of g, in' q\\

NG
As the notation indicates, it can be proved thiat the functions g™ are the
eomponents of a controvariant tensor fidldhof rank two with the following
properties: o
(10-26) g = ¢
9. = B3 (f:g@als Oif e Band 1if & = B8).

Define the Euclidean Chrislofiel symbols Tig(z', 27, 2°%) as follows:

. N\ . ag,,g agmr agdﬁ)
. _ £ (nif = 1gio| e | Ter  Hah]
(10-27) I‘ag(‘ﬁ':,'\fv'&; 7%} = 3¢ (a:ca + o oz

Since the law(of“transformation of the eomponents Jus and g*° are
known, on;t!&"calculate the law of transformation of the Flg(al, 22 %)
under a gtgﬁeral transformation of coordinates &° = fi{x!, 2%, z%).

Letsga;; and ¢** be the components of the Euclidean metric tensor
and Nitd associated contravariant tensor respectively in the £ ecoordi-
nates. Then if wo define

. . {37 o7 Ofa

(10-28) T, (@, &, 2) = %_c}‘“(%f + aL;; - a_ij)
we can prove by a long but straightforward caleulation that the
Top (2, 22, 5°) are related to the Thp(EY, 7% &) by the following famous
transformation law:*

(10-29) Tis(@, &, &) = Th (=, 22, 2%)

(10-25)

drr o ot | ox® oaf o
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In the previous chapter we saw that

3 a 3 i
(10-30) X VEDY a%‘ %,’
where the s are rectangular cartesian coordinates. Consequently,
if the x's are carfesion coordinates, it follows that all the components
bgaﬂ
oz’
coordinates . We have then immediately the Important result that
the Euclidean Christoffel symbols Tig(x', o, %) are identically zgre, in
cartesian coordinates. X

If the y* are cartesian coordinates and the «* are general cgordinates,
one can czleulate the Buclidean Christoffel symbols .I‘iﬁ\(a:l, x2, 2%)
directly in terms of the derivatives of the transformation functions in
the transformation of coordinates D

ot =S4 95 o)
and in the inverse transformation of coordingtes

yi = pilal, 22 x“f}
Since all the Euclidean Ohristoffel,’s'y‘ﬁibols are zero when they are
evaluated in cartesian coordinatesly? it follows immediately from the

transformation law 10.29 thatithe Euclidean Christoffel symbols in
general coordingles z* are givew,by the simple formula

, P l ‘
(10-31) M@, o, 2?) = Oy Oz
(@

Pas(at, 2% 2°) are constants. In other words, =0 in earfesian

&
QM
/N

oz 2P oy
This formula is gMen found to be more convenient in computations
than in the defining formula 10-27.

Caution: Thé Christoffel symbols are nof the components of & tensor
field so, that4, «, and 8 are not tensor indices; i.e., ¢ is not a contra-
variap‘tttnﬂex and e, § are not covariant indices.

The toncepts of tensor fields and Euclidean Christoffel symbols can,

) .l{yfthe obvious ehanges, be studied in plane geometry — two-dimen-

stonal KEuclidean space. Since we have two coordinates for a point in
the plane, all components of tensors and the Christoffel symbols will
depend on two variables, and the range of the indices will be from

1 to 2 instead of 1 to 8. Thus the Euclidean Christoffel symbols for the
plane will be

; . g oy
{10-32) 2t a%) = Lgir(gl, 2 (% —dag 0'3)
a.B( ) 29‘ ("‘n; ) axa + bxﬂ axa-
in termf% of the Euclidean metric tensor g.,(c", 2?) for the plane. The
alternative expression in terms of the derivatives of the transformation
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functions from rectangular coordinates (yY, 4%} to general eoordinates
(z, 22) and of the inverse trangformation functions will be

; o Tl
(10-33) Teale, ) = o= o
Exercise

Compute from the definition 10.32 the Euclidean Christoffel symbols for the
plane in polar coordinates. Then check the results by computing them from 10-33.

i
Hint: Use results of exercise I of Chapter Qand find gl = 1, glt = gt = (), g2 = z—wj\
Answer. AN
- O
Fh='¢‘;ﬁs=ﬁx=;—' =0, =0,Th=Th=0,F;=0 <J~"
2.\
L 4
N\
N
\ ’“"\V
\S,
Qt:} N/
«:\\‘
N
A\ "
R\
WK
L)
A
N
f;\x"l
©
N/
O
S\



CHAPTER 11
TENSOR ANALYSIS

Covariant Differentiation of Vector Fields.

Having shown the existence of the uclidean Christoffel symbols,
we are now in & position o give a complete answer to the fundaméntal
question — enunciated in the previous chapter — on the exthetision of
the notion of partial differentiation. We shall now provt that the
functions W)

»%4

i) il . ¥ '
o', =, 2°) @, 2* o) + T (2, 22, 28) £ (gt x5 2%)

a o
are the components of a mixed tonsor field* o\f rank two, called the co-
variant derivative of . This result holdg" for every differentiable con-
travariant vector field with the understandmg that the Tt {21, «2, %)
are the Euelidean Christoffel syrabiols. We shall use the nofation £
Jor the covariant derivative of E‘ Byhypothesm we have

(11-1)

=5

(11-2) B, ) - £, 0,29 o

8
If we then differedtiate ecorresponding sides of equation 11-2 we
obtain, by the wellkknown rules of partial differentiation,

2op o ortor , o oo

11-3 —
(11-3) 2 o o b od o7 ¥ 5 o0 0
We also\Qave

. g By Bt Zoat =4
(11 4) T, = T Oz" Oz* OF o ?2

“>F o on* | 0% OF"
\;[igwe multiply corresponding sides of 11-4 by £ and sum on j we obtain
ax“ OF o e e ¥

15 3 o =
(11-5) Lk o o2 T 20 ow 0z g
on using
_.or
=y o5
in the first set of terms and
oxi
EP —_—

56
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in the second set of terms. Since A and u are summation indices, we
can interchange A and g in the second derivative terms of 11.5.
On carrying out the renaming of these umbral indices, we can add
corresponding sides of 11.8 and 11.5 and chtain

i a al‘a"i
i+1@,:s=—(‘3 +T s*‘)i—f— :

oz ozt oz® ort
116

( ) P Ot E):c" oxi % bf")

27 ot o7 | o Oz7 O o
Now A~

OF 0r* .
(11-7) S e, '\,\“‘\
where : . \
§ ={1 if 4=aq
O if ise ) '\’\ 7

On differentiating 117 with respect to #*, we obtain D
Oz ort 2B W WA

NP %

ozt Or* OZ% | Oz* OF OF %

and hence 11-6 reduees to A O

(11-8)

: A "'~ £ o
(11.9) T - (25 )
But 11-9 states that the funotmns
.z”\bé
\\ a - T P

are the components; of 4 mixed tenser field of rank two. This completes
the proof of the I'esult stated at the beginning of this chapter.

"By a slight ¥griation of the above method of procf, it can be es-
tablished Ph\\&t the functions
GRS %

- 2

a?}ﬁae components of o covartant tensor field of rank two whenever &; are
the components of a covariant vector field, called the covariont derivative of
. As before, T'E, are the Buclidean Christoffel symbols. We shall use
the notation £; , for the covariant derivative of £,

Tensor Fields of Rank r = p < ¢, Contravariant of Rank p and Co-
variant of Rank q.

1% is convenient at this point to give the definition of a general tensor

field. Asin the case of tensor fields of rank two, the definition will be
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clear if we give the law of transformation of its components under a
‘transformation of coordinates.

& dg

(1-1.11) Tﬂl"'“ﬂ(jl 2 jg') - T}l":é’]’qp(xl x2 x3)a_x_ v ,ai

_ [oERRY: ] 1 1y ot bfﬁq
g e

™ o

We are now in a position to consider some problems that arise in
taking successive eovariant derivatives of tensor fields. However, we
must first say a word or two about the formuls for the eovariant defiva~
tive of a tensor field. If T gre the components of @ fensor ﬁeld of
rank p+ g, c:mtramrwm of mnk p and covariant of rank g‘then the
Junctions T5. 155 , defined by W\

TS "\ 3
Tgll g:‘! glﬂ_.' + Pa’rm? P M'\ /

+ ot anr ﬁl g:_w - ;I‘r véh ﬂa . - PEQTTE: x“ g:r’-lw
are the components of o tensor field of rank P+ q + 1, contravariont of
rank p and covariant of rank g + 1. p \

Tg. g, will be called the covarwntdmmtwe of Tg... 5. The above
result 1 stating that the covariant dérwatlve of a tenqor field is indeed
a tensor field can be proved by a I@ng but quite straightforward calcu-
lation analogous to the methe@ef proof given for the covariant doriva-
tive of vector fields. L

Hince the covariant'de?ivative of a tensor field is a tensor field, we
can consider the covariant derivative of the latter tensor field, called
the second covariahi derivative of the original tensor field. In symbols,
if T 5 is theloriginal tensor field, we can consider its second suc-
cessive covariant derivative

\’ T:;: ﬂn T 8" ¢

The fundamnml question arises whether covarignt differemtialion 1s @
commutatwe operation, i.e., whether

{a1-13) TR = T

The answer 18 in the affirmative® In fact, since all the Euclidean Chris-
toffel symbols are zero in cartesian coordinates, the partial derivatives
of all orders of the Christoffel symhbols are also zero in eartesian 0001 di—
nates. Hence if *T5.1/ (4", 2, 4) are the components of 7%

the cartesian coordmates ¥, we find with the obvious repeated use Of
formula 1112 that

*Tgl ﬂn"f G(y 1 y2: ?JB) =

(11-12)

——
o oyt
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In other words, we have the result that successive covariant derivalives
of a tensor field reduce fo partial dertvatives of the tensor field whenever
the tensor field and the operations are evaluated in cartesian coordinates.

Properties of Tensor Fields.
Perhaps the most important property of tensor fields is the following:

If the components of a tensor field vanish identically (or af one point, or
ab ¢ set of points) in one coordinale system, they vanish likewise in oll
coordinate systems. This resulf follows immediately on inspecting the
law of transformation 11-11 of the components of a tensor field.

If, then, one can demonstrate that a fensor equation O\

B = 0 O
holds good in one coordinate system, it will necessari]y,fhb‘ld good,
without further caleulation, in all coordinate systemg.,;For example,
consider the covariant derivative gy, ; of the Euclidean metric tensor.
Now, since PN
Gis, 5 = S'xi’: ~ GoiLis = 9’.‘&?&;

and since the g;; are constants when egglﬁat:ed in cartesian coordinates,
we have gy » = 0in carlesion coordingtes, and hence the tensor equation
g & = 0 holds in all coordinates thireughout space.

¢ } Exercises

2

1. Prove that the covaﬁa'\nt\iérivativw of g* and of 5} are zero. See equation
10-26 for the definifion ¢f\the tensor g, The mived tensor =lifi=jand
& =0if £ j. 4

2. If Tg is any fensor field, then show that 7o i3 a scalar ficld. Similarly, if
T5yis a mixed tpn(s;e} fiold of rank three, show that T, is a covariant vector field.?

3. If the feasor field T is defined by T _ A% 4.q in terms of the two tensor
fields a6 a.ad}aﬁ, prove that the following formula {(reminizcent of the differentia-
tion of & \ﬁroduct in the crdinary differential caleulus) holds:

@
a\" T§,1= v o + N pag, v

\‘;



CHAPTER 12

LAPLACE EQUATION, WAVE EQUATION, AND POISSON
EQUATION IN CURVILINEAR COORDINATES

Some Further Concepts and Remarks on the Tensor Calculus.
(NN

We remarked in Chapter 10 that, if s(z?, 2% 2°) is a scalar ﬁéld,’then

% is a covariant vector field. So, {o complete the pictufé of covariant
0 R &%
differentiation, we can call —sfi the eovariant derwat@ﬁé;}f the scalar field

Oz
s(zt, 22, 2%). A\

For some diseussions it is convenient to exﬁéﬁh the notion of a tensor
field. By a relative tensor field of weightley we shall mean an object
with componenis whose transformatio;’hléw differs from the transforma-
tion law of 2 tensor field by the appearance of the functional determi-
nant (Jacobian) to the wth powsites a factor on the right side of the
equations. If w = 0, we have “the previous notion of & tensor field.
For example: &

Ofort 22t oat |
\.. s bt —_—
\ X ot 0% oF®
o o 0z Da?
LR ) = | — — — 1 .2
JEBD =5 o | D)
o" ox® O dud
‘z“o§ bj’-’l, 6‘;2, a_;ES
a.nd: N el dxt ol
N\ W X il 2
) —_— ——
N\ ot ozt o
Firmz = dx? Ot P Pe i
oz :Cg, By=|—— — = 2 -
V@8N =2 = 3% £l 2 2
ot oF oF

are the transformation laws for a relative scalar field of weight w and

2 relative contravariant vector field of weight w respectively. A rela-

tive scalar field of weight ene is called a sealar density, a terminology
60 :
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suggested by the physical example of the density of a solid or fluid.
In fact, the mass m is related to the density funetion p(z?, 22, 2%) of the
solid or fluid by
= fffp(xly x2, x3) det do® dxs?

where the triple integral is extended over the whole extent of the solid
or fluid.

Another important example of & scalor density is given by Vg,
where g is the determinant of the Euclidean melric fensor ¢,5. In fact,

oz bxb Q
2. _
(1 1) Jup = LIPY S— O a ) \:\

Let § = | dug | » the determinant of the §,s. By a double 4saof the
formula for the product of two determinants when app],led to 12-1,
one ¢an prove that

dz® |? "‘.'\‘\
12.2 j=|— \¥%
(12-2) §=|30|9
a \.

where ~ | stands for the functional det\eimmant of the partial

by . xa A oo 7
derivatives > . \

On taking square roofs in 12-2 we obviously get

: “hox®

(12-3) «/&(}4 o | Ve,

which states that Vi sca.lar density.

The /¢ enters in an € entza.l manner in the formula for the volume
enclosed by a closed stuface. In fact, the formula for the volume in
general curvilinedy cbordinates * is given by the triple integrol
12-0) O V= p L G et de

This fom}for the volume can be calculated readily by the following
bteps If ¢ are rectangular coordinates, then

V=JSJSS dy dy dy.

Hénc’e
(12-5) V= ST dat da? di?,
where J stands for the functional determinant
oyt
ool

of the transformation of eoordinates from the curvilinear coordinates
z' to the rectangular coordinates y'. Now

0
gaﬂ($ 1: x)*ZgZ bzﬂ
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and henee the determinant
q= l Jag 1
is precisely equal to J? on using the rule for the multiplication of two
determinants. In other words
(12-6) V=1,
from which the formula 12-4 for the volume becomes clear.

Since the formula for volume in general coordinates z* is given by
12-4 it follows that the mass m of & medium in general eoordinates zf
has the form ~

m = S S Lo, 2% )Ny dat da? da, .
where py(2!, 22, 2%} i an abgolute sealar field that defines the (ﬁh\js\ical)
density of the medium at cach particle (z, 2% 2*) of the“medium.
Clearly o(a!, 22, %) = po(2Y, 22, ¥¥9)A\/g is a scalar den.sfty and, since
4/¢ = 1 in rectangular coordmates has the same_coponents as the
density po(x, 22, #%) of the medium in rectangularGattésian coordinates.

Other concepts and properties of tensors W1LL be discussed later in
the book whenever they are needed, R o
Laplace’s Equation. )

Let ¢** be the contravariant tenéor field of rank two defined in
Chapter 10, e,

12-7) _ (“fofa.etor of g, In g

S g

If (2, 22, 2%) is & scalat field, then the second covariant derivative
Vg 18 & covariant ten§<}r field of rank fwo. Now we can show that

0N o5 18 @ scalar ﬁeld In fact,

A\ X
128 oM - 5 2
\:.\;. bx" 2zt
AN - . 07 Ox”
12:9) ¢ &z
( ) ‘!baﬁ ‘P.a’ra:iu b:r':ﬂ

%\mu]tlplymg eorrupondmg sides of 12-8 and 12-9 and summing on
nd B8, we obtain

. dF™ i’ dz” O
A = QM
gu'p,a,ﬂ ‘b.wraxxaxu bx a

and hence the desired result
. gu‘s;;.u,ﬂ = gwilb,o'.f
on using the obvious relations

D" daF
12 * 10 —— = 57
¢ ) o o~ &
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Lef,
(12.11) Pz, 2% %) = ¢"* (@, o2, 2, 502, 2%, o)

for the arbitrarily chosen scalar field ¢(z, 22 2%). We have just shown
that F(z!, 2% 2?) is also a scalar field. In rectangular cartesian coordi-
nates, the Buclidean metric tensor has components 8,5 equal to 0 for
a = f and equal to 1 for @ = 8. PFurthermore, we saw in Chapter 11
that in cartesian coordinates, and hence in rectangular cartesian
coordinates, y¥,

Oy, o oY) W
WaslH W Y) = — N
sl U5 1) = T o e
The component of the scalar field F(z, #2 %) in rectangular, coordmates
#*1s then N
PR, v ) s,
6F =L Ll w\
oy~ oy Q
or N\w
2, 5 2 1 )
az.12) 2 ¢(y,ly;,y)+b*¢(y,gy m)ﬂ\g W 9% ¥}
(oyH @) O (0y°)?

the Laplacean of the funection *$ (3, y y”)
Hence the form of Laplace’s egmtwn in curvilinear coordinales z*
with the scalar field ¢ (2!, 22, £%) oy unk"nown is gwen by

(12-13) g (2, 2% x‘)sffas(xl @t 2%) =

where g (al, 22, #5) 4s the‘c@mmmant tensor ﬁeld 12.7 defined in lerms
of the Euclidean metmc\sénsor Jusr Ond where ¥, o(2t, 27, %) ©s the second
covariant derivative of bhe scalar field Y(zY, %3, 79).

If we wrlte 1213 explicitly in terms of the Euclidean Christoflel
symbols I, ml'\m‘* %}, we evidently have

1 1 2 a3
(12-14), ﬁ*(xl 2, ﬁ)(;“'?‘gx ’ ;’2 ) poa, o, xa)w——(xé =27 )) -0

as°the. fo?*m of Laplace’s equation T in curvilinear coordinates z*.
\It is worth while at this point to give an example of Laplaces
equation in curvilinear coordinates and at the same time review
several concepts and formulas that were studied in previous chapters.

T There is another form of Laplace’s equation in curvilinear ecordinates z*

which is sometimes more useful in numerical calculations than 1214, Tfis given by

. o

1 a(\/ﬁ g8 "

vy e

could be made for the wave equation and Poisson’s equation since the Laplace
differential expression occurs in them.

=0. For a proof see note 3 to Chapter 13. Similar remarks
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Let 2, 37, 3 be rectangular cartesian coordinates and z', 2% z* polar
spherical coordinates defined by the coordinate transformation

y' = z! sin 27 cos 7%,
(12-15) 4® = x* sin 2* sin 28,

y* = =zt cos 2%

|

Clearly the inverse coordinate trans-
formation is given by

ol = ‘\/(y!.)z + @+ @)

gt = cos”‘—( v
V(R + @)+ @)

N
2% = tan™! (Ez) QA
Yy "G

From the definition of the Euclidean metric tensor.gas we find
(12-16) gu =1, g = (@)% gue = (¢)* (in 9, ap& all other g = 0,
so that the line element ds is given by 4D

1217)  det = (@ + @A - (R52in 2)(dsd)

Again, from the definition of the tergs-:};"g“""", we find

1 N1
12.18 01 g% o — gl i =
( ) g ? g (x1)21 g\ Y Y (xl)z(sin xz)z » and a;ll Othel‘ g 0-
The Euclidean Christoffel §pmbols ean now be computed in spherical
polar coordinates; u. e@ither formula 10-27 or 10-31. They are as

follows: N
.sl’é’g = —a, Tk = ~z'(sin 222,

\ 1 _
, ) '\.’:\“ I"‘;3=I‘§1=;1, T% = —sin 22 cos 22,
12-19) N\
‘s'\\ 1'13 _113 _ = F3 8 2
) w=la="%5 23 = I'gy = cot 22,
.¢\’0

~O and all other T, = 0.

\On using 1218 and 12-19 in 12-14 (T3, T3, T% are the only non-
Zero ('Jhrl-sstoﬁel symbols that are actually used), we find that Laplace’s
equation in spherical polar coordinates 7', 32, 1* is

sw LS SN %
(12-20) @) * @) (a7 (2)(sin %)? (da?)?
20p ooty

et T @ op O

whenever the unknown function is & scalar field (2!, 22, 2%).
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Laplace’s Equation for Vector Fields.

We now turn our attention fo the related problem of considering
vector fields whose individual components salisfy Laplace's equation in
rectangular coordinales. The question arises whether each component
of the vector field will satisfy Laplace's equation 1214 in curvilinear
coordinates =%, 2% #* The answer is in the negative, as a little reflection
will now show. To be specific, lot the unknown he a contravariant
veetor field £z, 22, #%) with components *£i(y, 4%, 4*) in reetangular

cartesian coordinates. By hypothesis ~
a?*zi aﬁ*éi a?*gi A

12.21 + -+ = (. e \

(12-21) @ T o T &

By practically the same type of argument used in denvmg equatmns
12-13, we find that the contravariant vector field £(z?, :.:2 «%) in curvi-
linear coordinates zt, 2, =® will satisfy the system of- ﬂszree differential

eguations

(12-22) =0, O
where £, 5 is the second covariant derivativé’éf Ei(at, 22, 2%). Tf we ex-
pand 12-22 explicitly in terms of the Euchdean Christoffel symbols

Iaalat, % 2%) we find PN
a?ga as u: ag ‘aga
B = ) i.Ye
(12.23) T 5 0 ~ T gt Tow i+ T

.m\ oIk, ) :I
O T, — % T, =0,
b\ +( 5 &

8 system of three dlfferentml equations in which oll three unknowns
&, & & occur m\gach differential equation.

Wave Equation.”

The Qroﬁgatlon of various disturbances in theory of elasticity,
hydrodyndmics, theory of sound, and clectrodynamics is governed by
ﬂﬁapartlal differential equation known as the wave equatlon In
rectahgular cartesian coordinates ¥, the wave equation is

M*uly’, o o, ) OPuly, v o 1)
ot S
Py, vt 95 D | Pul, ¥ 0 0

@y (oy*)*

(12-24)

and hence in curvilinear coordinates z*

Dtu(zl, 2B 28, £)
._(’___—‘:—— = g“ﬁum &

(12-25) ~
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where u,, is the second covariant derivative of the scalar field
w(zt, 22, %, ). If we write 12-25 explicitly in termos of the Euclidean
Christoffel symbols we obtain §

dtule!, 2% 2% 1) g"‘ﬁ( o' v au“)‘

(12-26) of oo ot

It is to be observed that the right-hand side of 12-25, or equivalently
of 1228, is the Laplacean. If the z¢ are spherical polar coordinates,
Laplace’s equation has the form 12-20. Henee, immedisately, we gee
that the wave equation has the following form in spherical polax co-

ordinates K@
Sulat, @ 7% 1)  Qu . 1 o + 1 N\ 0%
o T o) @) @2 (@)*sined)? ()

(12-27) 2,bﬁ ‘ot 22 Du

+51\b_\; + {ah)? dat

By exactly the same caleulations as we used h*obtaining Laplace’s

equation for contravariant vector fields in iryilinear coordinates, we

find that the wave equation in curvilinear dotrdinates x° takes the follow-

ing form whenever the unknown is ¢ conlrovariont vector field £a', 2%
o3, £) that depends parametrically on ghettime &:

D%(at, a2 §)
—_—N =

(12-28) 3 05
or in expanded forr x”<
)
i, 2%, 1) g,,ﬁ[ o , 08 _; OF
P 2 g afl T o
(12.20) & 2% O . ox oz
O 4T 0’ N (?_'I:;'__u AR A )Eu:I
\:\ of 2™ b{!}’a + sl ae = Lavt af

on usiz;g'iﬁé corresponding result 12-23 for Laplace’s equation. Note
thaft\lf&- 29 is a system of three differential equations for the three
unknowns £, £, and £ and not just one differential equation satisfied
\by the three funetions £, £, and £,
Poisson’s Equation.

As a final exercise in this chapter we consider Poisson’s differential -
equation. In rectangular cartesian coordinstes 4, Poisson’s equation 18

O o o) | O, R 40 . DY, 4 o)
(12:30) ~ oy T
= —4r*s(yt, 1 ¥

t For another form of the wave equation, see Exercise 1 at the end of the chapter.
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On the right-hand side of 12-30, *o(3', 3, %°) is the component in ree-
tangular coordinates y* of a sealar field

P(xlm xg’ 53)
12-31) olzt, 2%, 28) = ———=
( Vg

where p(z', 22, 2°%) is a scalar density.t Since +/¢ is also a scalar density,
(2, 7%, 2%) is obviously a scalar field. From the definition of g as the
determinant of the g.s, we see that in rectangular eoordinates

100
(12-32) gy, v, y) =0 1 0)=1

0 01
Hence 2N\

Vg =1 A

and consequently i
(12-33) *a(yt, ¥ 4% = *olyh o ¥
In other words, the sealar field o(z?, 2% &) B.Qd. the sealar density
oz, 2%, %) have equal components in rectangulaicartesian coordinates.
On making use of our caleulations fora\laplace’s equation, we ean
derive corresponding results for Poisson’s differential equation. For
example, Poisson’s differential equa@'m{ in curvilinear coordinates x*
will be RN

I o2 a8 N\
ey AL Do, %) = —trotat %, 2,
28 }

whenever the unknown 19 scalar field (@', 2% T°). As before, the T5 are
the Euclidean Christofiel symbols in the «* coordinates.
&
\\" Exercises
1. Shmaffﬂ;ai; the wave equation in eurvilinear coordinates = with scalar u(z?,
4, 28, t} ,z}.&j,nnknown can be writfen as

N
N

7 du
\ a - 8- —
\ 4 A, P ah 4y b (\/E d a )
o VY oz
9, Show that Poisson’s equation in curvilinear coordinates z* with seajar g(at, 7%
z%) a3 unknown ean be written as

i
s Rusk il
1 b(\/g 7 axﬁ)
LI, W,
Ve dz*
1 In most physical problems (2, 2", %) = polat, 2% )V/7, where po, 2% &)
is an absolute sealar field and represents the physical density of a medium.

{zt, 22, 2%}
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8. Obtain Laplace’s equation 12-20 in spherieal polar ecordinates from the fol-
) ¢
I f f Lapla 1 a(\/é SEE)
owing form of Laplace’s equation: ~—z —————= = (.
P qf W b rad
4. Obtain the wave equation and Poisson equation in spherieal polar coordi-
nates on using the form of these equations given in exercises 1 and 2 respeetively.

R
P
\Y
e
\\:\
&Y



CHAPTER 13

SOME ELEMENTARY APPLICATIONS OF THE TENSOR
CALCULUS TO HYDRODYNAMICS

Navier-Stokes Differential Equations for the Motion of a Viscods\
Fluid, - A
As an interesting application of the covariant derivative of, & tensor
field in hydrodynamics, we shall write the famous Navier-Stokes differ-
ential equations in curvilinear coordinates. Lebt 3, 4, and 3 be rec-
tangular cartesian coordinates, and let K& 4

(wi=wi(yt, 3% 9, 1), the contraviviait velocity com-
ponents of a viscous fAuids

§ = time. R

P = p(y, ¥, ¥ 1), pressuréy ™’

p = oy, 4% ¥, £), density.”

(13-1) u = coefficient of viscosity, a constant.

y = E, kinematic-wiscosity.
P :
Xi = Xi(y', 4% %, D), contravariant vector components

L okb:cidy foree per unit mass.

Then the motion gha viscous fluid is governed by the four Navier-
Stokes differential équations.!

auf\é.\"(a?ui Lo wui)_ua@j+53 a_u_")
iy 2 ey ey e/ T T By
1 ap+X:‘
’“\: \ pay; }
Voo s
o o

The last differential equation is the equation of confinutly, which
expresses the requirement that the mass of any portion of the liquid is
conserved. For a non-viscous fluid, p = 0 and hence » = 0, the Navier-
Stokes equations reduce to the Eulerian hydrodynomical equations?

The expression within the parenthesis in 13.2 is the Laplacean of u*.
If we then make use of the results of the previous chapter on the form

69
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of the Laplacean in curvilinear coordinates, the Navier-Stokes differ-
ential equations take the following form in eurvilinear coordinates ¢

Dt . ; ¥ a 1, ap i
- af. 4 _ afPab Foode 7 po By L ota T8 Xi
ag Vg u.ﬂrB u u’-ﬂ + 3 g axa(u,ﬁ) P g bxa + H
(13-3) dp
5 T (e =0,

where, as before, commas denote covariant differentiation based on the
Euclidean Christoffel symbols Tigzl, % 7). If we expand the co-
variant derivatives, we can write the Navier-Stokes differential equaia'orﬁ:

in curvilinear coordinates z* as O\
( @_ ﬁ{_ﬂ.{_ri%‘:,{_ria_w‘. ra.@i .
ot el T o T ok T (A
AT, , R T
+ ( 7 + [ple — F;rrlg)u“] 7"“&9‘(— + I‘;‘mu")
[alrg 7 \oz~®
(13-4} S > {ouf 3 ap
P 2 %
oo T PB ur) r‘ Pl it ul H
+39 bx“(bx‘s + ot ) £ e XS
Op | O(pu") AV
- il nE I\Ct T _ L\
L Ot + ox” F Loapt g;

<N

It is of interest in itself as ng:aE in the above expansions to have

i3

equivalent expressions for theé™¥divergence” «7% in curvilinear coor-

dinates. We have used ﬂ}g’\eﬁdent formula

' e
12-5 \\ el M7 ot
oo e T T
but 4 can also bg jroved that®
(13-6) »\\ ut, = Ly M
N Vg oz

wherfa._g':i's the determinant of the Buclidean mefric lensor g, Formula
13- ‘6“‘13' often more useful in the caleulation of the divergence than
fermula 13-5. With the aid of formula 13.6 we see that the equation

of continuily for a moving fluid takes the following form in curvilinear
coordingles Tt

Oplat, 2% @5 8) . dpu) 2o

137 1,2 009

(13-7) > + o+ e 3 =0.
Ezamples

1, _We saw in the lagt chapter that, if the z* are spherical polar
coordinates, gu = 1, gm= ("% gu= (=) (sin 2% and all other



MULTIPLE-POINT TENSOR FIELDS 7

g; = 0. Hence
1, O 0
g=10, {3 0 = (#")(sin 2%)?
0, 0, (z)%sin 2?)?
and
ologg 4 E:lc::u,ggg,r“2 ¢ 52 dlogg
ozt a¥ Y o
The equation of continuily in spherical polar coordinates x* then becomes
dp . d(ou) ( e ;
= N\
bﬁ+ 5 +p -+ 2 cot 22 )= 0. ‘
2. As another exercise, we may take the z* to be cyﬁndr@c\ﬁi‘pﬁlar
eoordinates so that «\
S = (dal)? + (2)2(dxd)? + (gfzg)(ﬂ N Y
Evidently .‘“.,\\

i1 = 1, oz = ($1)2, Ja3 = 1, al}d &11 Oihe?‘ g‘_’ = D.

Hence the determinant g = (f)\ and we find readily
the equation of conimmty &y eylindrical polar coordi-
nates z

46(&“) :
™ o T =0
Incidentally g = 1, ¢® %’ ¢ = 1, and all other g' = 0, so that

the Euclidean Chrlstoﬁ‘s} symbols can easily be computed and found
to be Tg = —z4, Tlé =T = 1;, and all other T% = 0. These caleula-
£ ) X

tions for t-he.{l'hr"istoffel symbols.are very much simpler than the cor-
I‘BSPOIlding\\énés in Chapter 12 for spherical polar eoordinates.

M}l‘;iﬁ!e&"oiut Tensor Fields. §

\Thé tensor fields that have been studied so far in this book have
components that are functions of the coordinates of only one variable
point in space. It is possible, however, to consider generalized tensor
fields, called multiple-point tensor fields,t whose components depend
on the coordinates of several points in space. Perhaps the simplest
example of a two-point sealar field is the déstance between two points.

1 The first systemstic researeh on multiple-point tensor fields was initiated by
the writer many vears ago. See A. D Michal, Transactions of American Mathe-
matical Society, vol. 20 (1927), pp. 612-646.
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Let d(z, 2») be the distance between two points having general
coordinates (2, 25, 2%) and y = (z! g
(23, 23, z3) respectively. aton? 2202
Each point may not neces-
sarily be referred to the gz =(z! 22,9

M i [ LR R |
same ecoordinate system.
Fra. 13-2.

For example, the ] may
be spherical coordinates while the x5 may be cylindrical coordinates.
Under transformation of eoordinates

(13-8) # = fia, 25 ) )
and ' O
(13-9) % = Jith o a3, Y

the components of distance transform by the rule /> b

(13-10) A B) = Ay 1) SO

Of course, if both points 41 = (¥1, 15, ¥1) and . N {y, ¥a, ¥5) are referred
to the same rectangular cartesian coordmate\system, then the distance
is given by the well-known formula

(13-11) me~piwzmﬁ

Another simple example of & two-point tensor field is obtained as
follows. Define
(13 ) 12) @(&’1, Iz) = %’[d(xl’ xﬂ)jzi
where d{x, 72) is¢the above two-point distance scalar. Obviously

8(x;, ¥s) is also a, fWp-point scalar field. Consider the partial derivatives
of s(z, 22) wx&n xespect to the coordinates of the second point

(13- 13) N - Osloy, 2)
dzh

Novg under transformations of coordinates 13-8 and 13+9 of the two
&oints we know that

(13-14) 8%y, T2) = s(x, Ta).

Differentiating 13-14 we obtain

b§(£1,l f}z) - bs(xl, 235) ﬁ .
P dz5  OF

This shows that the partial derivatives 13-13 are the components of
a two-point tensor field: a covariant vector field with respect to the
second point and a sealar field with respect to the first point. If both

(13-15)
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poinis are referred to the same reclungular cortesion coordinate system,
then from 1311 we sce that

E)s(yl, Yz) i i

(13-16) byg =% —
If we define
. - 0
(13-17) s, ) = g‘“(xg)—s(-%@,

then obviously s#(z, x») is a two-point tensor field: a contravariant
vector field with respect to the second point and a sealar field wit
respect to the first point. If both points are referred to the same
rectangular coordinate system, then both two-point tensor, (felds
> ‘ A\
y and si(z;, ¥;) have the same components y; — yi~~i\n that
rectangular coordinate system. A

We shall have occasion to consider a two-point te'néer ﬁeld of rank
two, a contravariant vector field with respect to eash6f the two points.
As in the other examples, the two points neeghbot be referred to the
same coordinate system. The transformatmmba,w for the components
of such a two-point tensor field are ¢

EJ

(13-18) Fi(Ey, &) = (,xz, xs)axa E)zﬁ

A Two-Point Correlation Tensor erld in Turbulence.

Let £, xt, 22, %) be the\contravanant velocity field of a fluid in
motion. We shall den e\the mean value of & function f{£) of the time
¢ over the time mbervacl‘%to, ) by M| [j‘(t)] For example

(13-19) M[;\@, 2 2 2] = %ﬂ £, o, 2%, o) di.

Clearty MQ\ i, =, 27, x?')j is a contravariant vector field. Define a
set of fulttions C¥(z, 22) of two points, z1 = (a1, 2%, 23) and @3 =

(32:»‘% \-’C ), by
(13490) _ |
C’ii(xl, xﬂ) = M[Et(ts 551)5’(5,- xﬂ)]

TGO MLEC, 208, )1} el MIELE, 287, 2013

where g,4(z!, 2%, 2%) is the Euclidean metric tensor in the general co-
ordinates 5. It is evident that C#(z, 72) is a fwo-point tensor field of
rank two, a contravariant vector field with respect to each of the two points;
we shall call it the (fwo-point) corvelation fensor field. If both points
are referred to' the same rectangular cartesian coordinate system, then
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the eorrelation tensor field has components -

(13-21) - M [”E’ ?"f] .
{;M[(u?)ﬂ} {ELM[(@”]}

in terms of the notations
u‘i = Ei(t! yl)i u; = Ei(t! yﬁ)

If we now assume that we are dealing with the special case of ésolropic
turbulence, the correlation tensor field 13-21 in rectangular coordinates

simplifies still further and has components O
1 MTwju 3] KON
3 M[(w] o

on using the isotropic turbulence conditions that Mf[{il:‘fﬁﬂ is inde-
pendent of position and the index e, and equal, say,wt{idl‘f L))
Except for the numerical factor 3 the abovejd'\rectangular coordi-
nates is the correlation tensor used by KArmin.h igotropic turbulence.
See his paper entitled “The Fundamental @ the Statistical Theory
of Turbulence,” Journal of the Aeronaplionl Sciences, vol. 4 (1937},
pp. 131-138. WV

N/
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CHAPTER 14

APPLICATIONS OF THE TENSOR CALCULUS TO
ELASTICITY THEORY

Finite Deformation Theory of Elastic Media.!

One of the most natural and fruitful fields of application of thes
tensor caleulus is to the deformation of media, elastic or otherwise,
In the next three chapters we shall consider the fundamentals of oo
deformation of elastic media. We need not and shall not niake the
usual approximations of the classical (“‘infinitesimal’)~theory in
the general development of our subject. R,

Consider a three-dimensional medium (a collection ofbﬁint particles)
in three-dimensional physical Euclidean space. e ghall consider a
deformation of the medium from the initial '(;:'Ln}ti'ahled) to its final
(strained) position and obtain the strain tengetfield under less stringent
restrictions than those imposed in Chapter,10.

Let (‘a, %0, *a) be the curvilinear eoprdinates of a representative

article in an elastic medium, andJgt’ (+}, 2%, 2%) be the curvilinear
coordinates of the representatiyé’,‘particle after deformation. The
deformation, & one-one point ransformation 4 «» X, will be assumed

xm\
2\ 3

Uidruined
D e 14-1.
given bét differentiable functions
(14\"“19"' zt = fi('a, %a, %a).

It is convenient, and of some importance for the mathematical founda-
tions, to assume that the representative unstrained particle A is repre-
sented in o coordinate system not necessarily the same as the one in which
the corresponding strained particle X 13 represented. For example, ‘g, *a,
%2 may be cylindrical coordinates while z*, 2%, #* are spherical polar
coordinates.

We shall adopt the following notational conventions with respect to
one-point and two-point tensor fields. Tensor indices with respect to

75



76 APPLICATIONS TO ELASTICITY THECRY

transformation of coordinates of strained particles will be written to the
right, and tensor indices with respect to transformation of ceordinates
of unstrained particles will be written to the lefi. For example, under a
simultaneous transformation of the eoordinates ‘e of point 4 in the
unstrained medium and of the coordinates z¢ of point X in the strained
medium,

g =28
(14-2) =5,

is & two-point tensor field of rank two, contravariant vector field with
respect to point A and covariant vector field with respect to poinf b

In other words, under iransformations of coordinates O\
ig = ig(ia, %a, *a) ¢ :\
(i4-3) {_. i, 22, %) ~\

S

in the unstrained and strained medium respectlvelyi the two-point
components *a,, undergo the transformation

228 o
(14-4) e = " s ot O
o Q¢
Bimilarly
D™\
(14-5) o ='5%

is & two-point tensor field of rank two, covariant vector field with
respect to point A and contrdvariant veetor field with respect to
point X. The relationshlp‘&

{14-6) (’Q@Q(a a") =3, (o} es) = 5
are clear, where (%
O - _of=0 if 7
N 0 =9 { 1 if r=s
Let thed \tlal and final squared eloments of arc length in curvilinear
coordma%s be given respectively by
r ds = ngt(a)(@a)(d%a),
M (O

Clearly, the initial and final squared elements in terms of the final
coordinates z¢ and initial coordinates ‘e respectively are

ds2 = h.de® dx’
14.8 b = R :
(14-8) {ds2 - (dra)(da),
where

Ryy = o560 ,)(5a.)

14-0 'or cff 2 VTl

( ) _ {qu = Goglp2") (q.xﬂ)°
We are now in a position to write down the change produced by the
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deformation in the squared arc element, In fact, in terms of the
coordinates z°, we have

(14-10) ds? — 4 = e.5() da” do?,

where

(14-11) €5(2) = 3{g.5(%) ~ hap(®))

Similarly, in terms of the coordinates ‘a, we find

(14-12) ds? — ds§ = 2,4m(a)(d%a)(d%a),

where ~
(14-13) w1(0) = Hogh(a) — o50(a)). \

Clearly ¢,4(x) s a covariant tensor field of rank fwo in the “.st}'c\a%w;e ”
coordinates x* while ,em(a) is a covariant tensor field of rank two in the
“unstrained” coordinates ‘a. We shall call eq(z) the Eulerian sirain
tensor and ,on(e) the Lagrangean sirain fensor. Thé\Eﬁkrian stran
tensor will often be referred to as the strain tensor. \We’have chosen this
terminology n analogy with the two viewpoints' in hydrodynamies
represented respectively by the Eulerian aqt(the Lagrangean differen-
tial equations of motion. As an immegiae consequence of formula
14-10 we find the following fundamental result: A necessary and
sufficient condition that the elastic ({eféfmgiion of the medium be a rigid
mofion (i.e., @ degenerale deformgmb}i that merely displaces the medium
tn space with a preservation of distances between particles) is that the Eu-
lerian strain tensor compongnld be zero. Equivalently from 14-12 we
have: a necessary and, suffibrent condition for a rigid motion is the van-
ishing of all the Lagar;a}@an strain components. These results justify
the use of the word &8train” in connection with the tensor fields e(x)
and aﬂn(a)- ¢ \¢
Strain Te so?é in Rectangular Coordinates.

If the,*%}tme reciangular carfesian coordinate system iz used for the
description of both the initial and final positions of the elastic body,
t{e‘@ulerian strain tensor reduces to
(14-14) (a, 22, 2 _:_[.(6 Za_a’\_.a@ .

es(y 2%, 7°) = o\ % "L__beablﬂ
In terms of the ususal notation (a, b, ¢} (5,9, )
and (z, g, 2} for the rectangular eoordi-
nates in the same coordinate system of
the representative initial and final parti- (e, b¢) (z,%,2)
cles respectively, we have Unstrained Strained
F1a. 14-2.
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(14-15)
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- -@-©))

obob Oc E)c:l
= €gzy
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1
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i
=9
1-
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1
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da O
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T ozdy  oxdy  oxdy

v % _den]
| "9z0z om0z dxdel 7
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“\oy/ T \oy/ oy

oaoe o000 _dede]

_abz_byaz_bybz = G

Similarly the Lagrangean strain tensor reduces t?'\\

(14-16)

1 3
aﬁn = _2"(

az* At
2o

al-,

¥ 4 s 0‘
S D

On denoting the “displacement vectnp"i\(i"ea.lly 8, hwp-point tensor
field that was discussed in the previous ¢hapter) (x — @, ¥ — b, 2~ ¢)
by (u, v, w) we can rewrite 14-15 in-the form

@) )]
== 2 \ox A\ + 20/ J
(au bg) [Bu Ju Opdy Ow bw:l
f = 2\0y _tb:c 2 dx oy e dr Oy o "o o dy o
1o ow 1 ou du bvbv awaw
= 2(52 + ax) T ol%20: Toros T oed T ™
(14-17) 1 “b?} T/ 3\ p\? o\
NN
\ oudu dedw dwdw|
o) ( o) - oo S 2|
\V X\ (o fow
‘“25” l:(bz) +(g;) +(az)]

In the classical theory (the usual approximate theory) of elastic deforma-
tions, the squares and products of the partial derivatives of u, v, and w 6re
considered negligible. Hence, to the degree of approximation considered

tn the classical theory, 1417 yields the following well-known formulas
for the strain tensor:
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-

oo - E(a_“ a_f-') _
== T2 by+ba: G
1fou Dw\, op
(1418) g €2 = 2(2)3 + ax).;_ €zry Epy = 5:!;",
(22 "
Cys = o\ 2z ay = € €&x = > .

Change in Volume under Elastic Deformation.
Let us now return to our deformation.theory without making the
approximations of the classical theory. One of the first fyndamengal®
questions that arises is the manner in which volumes behave under &
deformation of the mediumm. A\
The element of volume in
the unstrained medium is,

by 12.4,
(14-19) dV, = Ve dladia d%a,
where ¢ = | q¢ |, the deter- Unstrained \\ Strained
minant of the ,e¢. Similarly, (M. 14:3,
(14-20) dV = +/g dxhdg¥da?,
where g = | gus | , the determinand\of the gos.

In terms of the “‘strained variables” rt, we have
(14.21) aVs ?{(/5 ! “a.; I dx! dz? dod,

‘' o«

X A% o
where | %a; | is the’dé%rminant of the 5ot
Now WO

O
S = 00y o e = hog(s) do® 42,

where haaﬁéi;en by formula 14-9.
Eviclqnay the determinant & of the A,y is given by

w\::\:f.' h=c 1 aa:" |2'
From this
(14-22) VA=l
and

(14-23) dVe = Vb do' da? de*.

Formulas 14-20 and 14-23 imply that
AT /E

14.24 —r=1

(i4-29) av l p
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Define

(14-25) kg = §hyg
and thus obtain
(14-26) Bog = Gaolts

by an application of the properties of g,z and ¢*%; see formulas 10-26,
From 1426 we compute

(14-27) h-gl % |,
where | 43 | is the detcrminant of the A3, On using 14-24, we have
immediately O\

d]? NS ©
(14.28) ==V . \ >

W,
77
S

To express this ratio in terms of the strain tensor e,,&vwe first recall the
definition 1£-11 and obtain

eol) = Gop() — gD
On raising the indices with the aid of th¢ 3™, we evidently have

(14-29) hg = 25,,,
where the mixed tensor field ¢ pf rank two is defined by
(14-30) SIS (2)es(2).

Cn using 14-29 in 14- Zfa\we atrive at the Important result that the
ratio of the element qgglume of a set of particles in the unstrained medium
o the element of bolume of the corresponding particles in the strained
position is givend interms of the strain tensor e,g(x) by means of the follow-
ing fm‘muh “

(14—31)\\~ | i'EE'= VIig-250) |

. Notlce that, with rigid motion of the medium, the strain tensor
&# = 0 and hence ¢ = 0. Hence, from 14-31 and &§ = 0, we see that
a rigid motion preserves volumes.

We have developed the fundamentals of elastic deformation and
strain tensor in three-dimensional space. It is clear, however, that
everything we have said can be taken over for the corresponding
elastic deformations in the plane. Tn all the formulas, there will be
two variables 2!, 27, ete., the indices will have the range 1 to 2, and the
consequent summations will go from 1 to 2. For example, formulas
14-14, 14.15, 14-17, and 14-18 for the Fulerian strain tensor will be
respectively as follows in elasticity theory in the plane.
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1 2 o'a D'z
. (14-32) ealel, %) = 5(6,,8 - E > 5?")

D) (]
1[ dada b ab]
)

(14'33) 4 Ezy = E ax ay ax ay €yzy
z
g G - G |
REHE)
T or 2 \ox + 2a) | ' \‘~\
1fou ow Oudu Ordy \
(14:34) 1" 2(63; + b_x-) [bx oy Y aﬁy:l - 6"’" N
dp 1'(au) (as) v
SRR AT At B
whereuéx—aandvmy—b. 7.\
; R
du
Ery = b:c’
(14:35) < € = é(g—:’ + gg) = e?§,:.;§f
ov 4 Unstrained Strained
LEW = ay. im\ Fig. 14-4.

\\
A D Exercises
1. Find the com ents of the Eulerian strain tensor exg( 2, 2% #°) when the
deformation of thg stic body is'a stretching whose equations are
o\:l"r Afa (4 is a constant greafer than unity)
where both ﬁ‘ and ‘g are rectangular coordinates referred to the same rectangular

coordmam Systom. Discuss the change in volume elements. Work out the cor-

011 difig problem in plane elasticity.
ork out exereise I for a contraction so that the constant A is less than unity.



CIHAPTER 15

HOMOGENEQUS AND ISOTROPIC STRAINS, STRAIN IN-
VARIANTS, AND VARIATION OF STRAIN TENSOR

Strain Invariants. ~\
If we expand the three-rowed determinant | 2§ |, we find,
(15+1) | 55— 2 | = 1 - 2I, + 41, — 8I, .\\‘“
where ' 4"3‘, .
I, = &, I, = sum of the principal two-rowed mingqs Zfﬁ the determinant
(15-2) aA=] &, and I3 AV
A function f{g, g, - -, e, €n, ag “"xi\é.ﬁ‘) of the Euclidean metric

tensor g,z and the strain tensor ez will-be called a strain invariond' if
{a} @i isascalar field; (B) under all tra:izsformatz’ons of coordinales oo &

(15-3)  f(gu, Gz - ) Goas ey fl?r’:'i" "y &3) = flgu, gu, -+, ga, €n, emy

ey )

where the function f, on the Teft, is the same function of the §os and &g
as 1t s, on the right, of e g.s and ez

We shall now proyve‘that the three functions I, I, and I, occurring in
the expansion of the determinant 15-1 are strasn dnvariants. From the

law of tra.nsfor\ﬁia,ﬁion of the mixed tensor field ¢ we readily get

'\“ ' Eg(f:l: z2, 53) = fz(xly 7, xa)J
from w@}h follows that I, is a strain invariant on recalling thet
&= Q&%,ﬁ. To prove that I3 is a strain invariant, we have by hypothesis

¢

NS - oz OF*
ws\" Eaj ka_'_-_'.
\ \ ﬂ( ) e,u( )ajﬂbxl
On taking the determinant of corresponding sides, we obtain
Eg = t—:)l . @‘ . @1
# QFs Qx?
But the _pI’Oduct of the functional determinants is equal to unity.
Hence | @ | = I & |, and I is & strain invariant. To prove that I
15 a strein invariant, we first observe that
b3 — 2¢;

82
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is a mixed tensor ficld of rank two. Tlence, by the argument just com-
pleted for | ¢ |, wo see that the determinant | 6§ — 2¢3 | ds dtself a
strain invarieni. But, from the expangion 15-1, we sce that

(15-4) L=3[)88 - 2¢ | — 1421+ 8],

Formula 15-4 expresses I3 as & linear combination of strain invariants
with numerical multipliers. Hence obviously I, is itsclf a strain in-
variant.

On using the results 1431 together with what we have just proved,
we obtaln the result ,

A v ' \
— =WV1-2I +4I,- 81 A\
v 1+ &y 8 " \J
which gives the ratio of the element of the volume of a set of pa-ttz:c';{e\é in the
ungtrained medium to the clement of volume of the co-rrequn{i?:ﬂg ‘particles
in the strained medium in terms of the three strain invarignls Ty, I, and I,

(15-5)

Homogeneous and Isotropic Strains. Y
Let us now discuss the mathematical description of a homogeneous
strain. PAY;

DEFINTTION OF HOMOGENEOUS STRA;;;.' “A strain is homogeneous if
the corresponding strain tensor e, h88 a zero covariant derivative,
i.e., &g, = 0. RN
) Je,

5 = Osinceall

the Euclidean Christoff: lx'éyfnbols are identically zero in rectangular
coordinates. In othepwords, the strain iensor components e in 7ec-
tangular coordinates @t constants for a homogeneous strain.

It readily foll #(rom the definition of the strain invariants L, 1,
and 73 that fqrx;;}wﬂwgenetms strain

:"\ ” aol;
4 .\': 3 4 ax? o
in fectangular coordinates and hence in all eoordinates. (Keep in mind
that'T,, I,, and I are three scalars and not the three components of a

In rectangular eoordinates, \tﬁe condition reduces to

ALY .
covariant vector.) Hence, for a homogeneous stran, — 18 a numerical

dVv
constant for all coordinates. We thus arrive at the important result
that for @ homogeneous sirain

%‘ - 41 ~ oI, + 4, — 8I; = a constant.

(15-6)

This constant is the same for all “unsirained” volumes Vo and their cor-
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responding  strained” volumes V, and is independent of the coordinale
system.

For the special case of a homogeneous strain which is also 4sotropic at
each point, we shall have '

{15-7) 6 = &b
or what amounts to the same thing
{15-8) €ap = Jag- (s, the Euclidean metric tensor.)

Since the strain is homogencous, we have ,5 , = 0. We also have/f(sec
the end of Chapter 11) .
Gop,y = 0. ( . .\

Hence ¢in 15-7 and 15-8 15 a constant scalar field, a numenﬁal eonstant
that is independent of position and the coordinate sysmm

An example of an isotropic homogeneous strain ds%ound in an iso-
tropic medium subjected to uniform hydrostatie’ pressure, ie., an
isotropile medium subjceted to the same prcswrc in ali directions,

Since 15-6 holds and

R
1 — 2, + 41, - 814 =¢|j~a§z; -2 |,
we see by an evident caleulation thaw for an isolrapic homogencous strain

(15-9) ? $ 0 — 208,

The constant scalar e {dk an isotropic homogenecus strain is given

by the formula \\ Ne

5. _1 E’g
(15-10) ‘\ € —-2|:1 - (V):I

in terms of #my one volume before and after deformation.
In the @sual approxzimate theory (usual theory of elasticity) higher
powqr&ﬁf ¢ than the first arc neglected; sco Chapter 14. Since

\$

o N (1 - 26)% = 1 — 3¢, approximately,
\we ‘have
v
(15-11) Fﬂ = 1 — 3¢, approximately,
and
1V-Vo 1AV 14V
15-12 == — -
( ) € 3 V =37 - V , approximately.

A Fundamental Theorem on Homogeneous Strains.

We shall now outline the proof of the following theorem. A necessary
and sufficient condition that @ strain be homogeneous is that, in terms of
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unstrained carfesian coordinales °2 and strained carlesian coordinales ¥,
the deformation is linear, i.e.,

(15:13) “z ="A; gt + "A.

Qutline of Proof.
Trom the definition of the strain tensor e,z we have

bog = Gpa — 2¢pe.

Since gpqr = 0, and since under our “necessity hypothesis” epq, =
we obtain the vanishing of the eovariant derivative of k,, (z). But
by definition e \

bpg (@) = (45€) (da.p)(ﬂa,q) . \,,\

%

50 that the z' are the independent variables and the 24.ate the de—
pendent variables. Expanding the covariant derlvatlvqm hpar (2) =
and rearranging, we find ’

\.‘
(15+14) o€ g P g = — b::c “a.,%a, --,@Q?‘a_,, fa, 4r,
where QO
o Fapeld o
(15:15) G pr = bsqﬂ"'\‘_ | -
Since N
(15 16) "‘\ apr = ar_‘P}'
the right side of 15- 14311\11813 be symmetric in p and r. Hence
O™ Dot ,,
(15:17) L% aa’q I a—;f O P — gt %0 00

On equath the corresponding sides of 15-14 and 1517, rearranging,
and mtem%ngmg p and ¢ and B and o, we obtain

DsC [ 8
(Q\“;S) afC “a \pr Ea’ gﬁr aad-" @qF E)ﬂ;q aa'-" SG.IJ + agl aaa" &, qp-

Adding corresponding sides of 15-17 and 15-18 there results

sl o
T o T e
Recalling that the 4 are functions of the unstrained coordinates ‘a, we

find
1[5 | Ougt awc:la B, %
= i <l N S Y
2[6"’0: + o*a % Gr Gha O

(1519) 2,400,070,

(15:20) 4¢ %G orPa

19
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Multiplying corresponding sides by . z¢ and summing on g, we cobtain
1 mt 0t Outi,

Finally, if we multiply correspondmg suies of 15-21 by €™, we arrive

readily at the interesting result

(15-22) Qe = =l (€ "2y "G
where (@) are the Buclidean Christoffel symbols based on the Euclidean
metric tensor ,ucla) in the unstrained coordinales ‘a. N\

Now from the definition 15-15 of g 4 and from the vanishing g of the
Fuclidean Christoffel symbols T ;c(:;,) an(l JLT‘(G) when ualuaﬁed in
“strained” cartesian coordinates 4 and “unstrained” ca},rtesmn co-
ordinates % respectively, we see that 15-22 reduces to ™
Dt ol . 'M;\\
oy” Oy

(15-23)

This implies that the deformation is linear, i e\\?% type 15-13.

To prove the converse part of the fundaﬁxental theorem on homo-
geneous straips, we have by hypothesis thatrthe def ormation, or strain,
isgiven by a linear tram,formatlon 15 13 in cartesian coordinates
and yt. Now

hgo(z) = ,&ﬁda) (“a.p) (ﬁa. o)

and ,e¢ are constants ,4¢ i eartesian coordinates. From 1513 we
have NS

e,

ayr 4a
and hence the¢ components *hpe(y) In cartesian coordinates y' are
given by >

N

N\v

¢ \" i *hpq(y) = aﬂd aAzJ ﬁA a
a set of\eonstants. Hence
AN
e\ a*hpq(y)
\Y T 7"
But this condition implies that the covariant derivative

Rpgr (@) =
and hence the covariant derivative €pa (x) = 0. In other words, the
strain is homogeneous, and the proof of the theorem is complete.
Variation of the Strain Tensor,

In preparation for the subject matter of the next chapter, we need
to consider deformations that depend on an accessory parameter ,
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which in dynamical problems can be taken ag the time 2. So let the
coordinates x* of & representative particle in the strained medium
depend on the coordinates ‘e of the corresponding particle in the
ungtrained medium and on the accessory parameter &. Let

dxi(la, 2a, 3a, ) i

ot
be the partial differential of z? in ¥, If f... (z) is any tensor field in the
gtrained medinom, define 8. (x) by
(15-25) of . {x) = fi Dad, R
where f.0; is the covariant derivative of fI... Clearly, if th;aé:;”a;e
eartesian, 8110 = Df), Moreover, 8f(z) = Df{z) for a scalary{z) in
general coordingtes #%,  To have a well-rounded not-@fs‘iﬁﬁ; define
827 = Dor and refer fo 6" as the wvirtual displacementvector. If
z¥la, 2a, *a, £) have continuous second derivatives,\fhen from the
commutativity of sceond derivatives O

(15-24) Dz =

Q.

¢
A{bx”
D) = 2520 Sa)‘ga\f).
Hence o)
el

D(de#) = %cawk) -dz®,

which implies the tensor equa{ion '

(15-26) o) = (5 . Ao

Obviously dg,, = 0, sinee g, = 0. Hence the above tensor equation
may be written o5

2X
(15-27) \ 8(dry) = (5a) o 2™
Since Ed(fa) \0 an evident calculation using 15-26 shows that
(15 28) a(fa,ﬁ) = —"a‘ (6:3“),3

Recall;ng that
~ hue(a) = so(0) (“0,) P9
and applying formula 15-28 we find
ohpg = _asc[aa,r(axr),pﬁa,q + “ap ﬂa,f (5f).q:|;
which ean be put in the convenient form
(15-20) Shpg = —h5(82,) » — Hpld2) a0
From this, and from the definition of the strain tensor e, and the re-

lated formula,
BE = 8% - 2¢],
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we arrive at the fundamental formula for the variation of the strain fensor,
(15-30) ey (&) = 30 p + (B2 ] — [6082,) o + & (02, .1

This formula becomes

(15-31) Bepg(®) = 2 xy) p + (07p)0]

within the approximations of the usual approximate theory of elasticily.

Returning to our finite deformation theory, we define a rigid virtual
dzsplacement by the condition §(ds®) =0. On wusing formulas 15 26
and 15-27 in an evident caleulation, we find

(15-32) 8(ds?) = [(32,) g + {67p) o) da® da® .\“\'

for any virtual displacement, rigid or not. Tlence the v1rtual dlsplace-
ment vector must satisfy Killing's differential egua&ons for a rigid
virtual displacement R4

(15-33) (8 5 + (825) . = 0.

For the sake of completeness, we shalloywite down the formula
(without giving the derivation) for the.yatiation of the Lagrangean
strain tensor ,m under an arbitrary virttel displacement.

DR NCAPRR GO PR
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Exercise

Caleulate the three funda ntal strain invariants for a homogeneous isotropic
strain. Hint: since thoy az6'gonstants, caleulate them in reetangular cartesian co-
ordinates. \\
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CHAPTER 16

STRESS TENSOR, ELASTIC POTENTIAL, AND
STRESS-STRAIN RELATIONS

Stress Tensor, \
Let S be the bounding surface of a portion of the elastic medin

in its strained position. The surface element of S may be described by

meang of the covariant vector d8;, N

(18:1) dSi = /g d(@, 2%, 45 = /g (&, o), d8; = Q(g d{z, &%),
where \V
oz o )
r AW

ou | LY
. D2y /
16-2) d(z®, b ot adk @bdﬂ
ou . »@w

and u,  are the surface parameters pico'tha’o the parametrie equations
of the surface S are given by zi =\fi(u, ). In rectangular coordinates
and in the usual notations 2{%, 2, the eomponents of the covariant
vector dS; are given by ("

dS, - d(goa), dS, = d(z, o), dS, — d(z, ).

O\ Exercise

~t\”. . .
Prove that"dS, is a covariant vector under transformations of the
coordinatesd®. Hint: use the fact that 4/ is a scalar density.
Let d$be the magnitude of the surface element, ie.,
)

P\ (dS)? = g dS, dSs.
Béfore we introduce the notion of a stress tensor we must define a
stress vector. A siress vector is a surface jorce that acts on the surface of
@ volume. An example of a surface foree is the tension acting on any
horizontal section of a steel rod suspended vertically. If one thinks of
the rod as cut by a horizontal plane into two parts, then the action of
the weight of the lower part of the rod is transmitted to the upper part
aeross the surface of the cut. A hydrostatie pressure on the surface of
a submerged solid hody provides another example of a surface force.
There are other kinds of forces called body, volume, or mass forces,
89
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ie., forces that act throughout the volume. As a typical example of 5
mags foree one can take the force of gravity, pg AV, acting on the mass
contained in the velume ATV of the medium whose densify is p, and
where g 1s the gravitational acceleration.

A stress tensor T™ s defined implicitly by the relation

(16-3) FrdS =T dSs,,
where Fr is the slress veclor acting on the surface element dS,.
Let us now consider a virtual displacement of the strained medium

corresponding to the accessory parameter £ The wiriual work ofthe
stresses across the boundary 8 is ¢\

(16-4) S/ PP by dS = S T b1y dS, = S S (T bagh AV,

a volume integral extended over the volume V boundgd by S and ob-
tained by Creen’s theorem or generalized Stokes™theorem in curvi-
linear coordinates. \

If there are mass forces (M7 per unit mags)\\acting on the medium,
the virtual work of these mass forces is (N~

S S S oMbV,
¥V L QY
where p i3 the mass densily. Heme, the virtual work of all the forces
acting on any portion of the ngpdilim is
(16-58) f‘{;‘f[(Tf"“—"l— pﬂ[ﬁ)ﬁ.’cﬁ + Tﬁ“(ﬁxﬁ)ﬂ] dav.

We shall now adopt% e’

Paysican ASSUMB’ﬂ N oF Equintenivm: The virtual work of oll the
Jorces acting on. @y portion. of the medium is zero for any vigid virtual
displacement. ()

In partieulat, the translations, characterized by (3z,), =0, are
rigid W{Qﬂk displacements, and so we must have the condition
(16- 9);3 ./‘J'VJ‘(T?; + oMP) 6z, AV = 0.
Q}ilﬁé'e 3z, is arbitrary at any chosen point and V is arbitrary, we have
the following differential equations for equilibrium:

(16-7) T 4 pMP = 0.

Cm_lsequently the virtual work of all the forces (mass as well as surface}
afztmg upon any pottion of the medium in any virtual displacement is
given (on using 165 and 16-7) by

(16-8) Total virtual work = f f* /' T®(8x,) , dV.
A .
Bince this must vanish for any rigid virtual displacement, i.e., for
(82,) g+ (824) » = 0,
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the stress fensor must be symmetric:
(16-9) T8 = TP
Hence 16.8 can be written
(16-10) Total virtual work = 3./ ‘]/7‘ ST (62, 5+ (85) ] AV,

Within the approximations of the usual approximate elasticity theory,
the total virtual work may be written
(16-11) S S S TP e, AV .
v _ y
gince formula 15-81 holds for the approximate theory. But notegha,t
this is not & legitimate result for the finite deformation theory ;Jormula
16-10 iz the legitimate result for that theory. N

ol
N
L 3

Elastic Potential. D

We shall now turn our atfention to the elastic"’;}otentia,l and its
relation to the stress tensor. Let p b the densitxqf the volume element
dV in the strained medium. The element of flass dm is given then by
dm = pdV. The principle of consemaﬁm@'}f mass In & virtual dis-
placement is expressed by O

3(dm) = 5(paV) = 0.
Lot T be the temperature of the element of mass dm, o the entropy
density (per unit mass) so thal the entropy of the mass dm is ¢ din
= po dV, and w dm the iftérnal cnergy of the mass dm. Then the
fundamental energy-cag@wation law of thermodynamics says that

(16-12) O Tiledm) = &(u dm)
(virtual work ofall forces acting on dm), Let
(16.13) _ 0 ¢ =u—To,

the fl‘ee’éhefgy density or elastic potential.
Frofittthe principle of eonservation of mass, we have, on integrating
O’v‘qi‘.ﬁny portion of the strained medium and making use of equations
8, 16-12, and 16-13,

(16-14) { S (p)p dV = f{fT“ﬁ(axa),ﬁ dv - f{f(éT)pa dv.

Since V is arbitrary, this yields
(16-15) p &p = T°(5z,) g — pu 8T

We shall now work under the following

Hyroramsts on Erastic POTENTIAL ¢: ¢ is @ Junction of 6. the
Buclidean metric tensor g:;(x) in the strained medium, the Euclidean melric
tensor ,gc(a) in the unsirained medium, and the temperature T
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We shall restrict ourselves to iscthermal variations, so that 7 is a
constant parameter in ¢. From 16-15 and the symmetry of the stress
tensor T*°, we see that 8¢ = O for any isothermal rigid virtual displace-
meni. Now, for any virtual displacement, §4¢ = 0 and dgy, = 0. Hence
from Killing’s differential equation 1533 we have

O¢
16-16 5, =0
whenever
(16-17) (b)) 5 + (8z5) o = O N\
Let O\
@(z) = ¢°5() g O
and use the formula AN

8(ag) = —"04 (82)  (see formula 18 -”28)
and 16-17 in 1616 to obtain \

aa'y — ua = 0'

[a(‘*a,ﬁ) 3a,) (Q“‘*\)ﬁ

Hence ¢ must satisfy the following ‘system of partial differential

equations oY
3 o0 8

: gy L
(e 3(%a,)

This is a complete systempf three linear first-order partial differential
equations in the nine ¢aiables *a,  There are nine conditions in 16-18
but three are iden@it;é and only three of the remaining six are inde-
pendent. From the“theory of such systems of differential equations!
we know that ‘th}‘geneml solution of 1618 1s & function of siz functionally
independenp-sblutions. Tt will take us too far afield to give the theory
of such §>’\ffe‘rential equations; we are content herc with this mere state-
ment @f the result concerning the most general solution ¢,

. There are some particulsrly interesting solutions of equations 16-18.
To)consider them it is convenient to define an isofropic medium.

DermaTion oF Isotrorrc MEDIUM. 4 medium whose elastic potential
t8 ¢ slrain invariont that may depend parametrically on the temperature
T will be called an isotropic medium.

Now it can be shown, but in this brief volume we have not the time
to give the details of proof, that the elastic potential for an isotropie
medium satisfies the differential equations 16-18. Tt can also be shown
by 2 long mathematical argument that any strain invariant is a Junction
of the three fundamental strain invarignts I, I, and I; of Chapter 15.
The following important result is immediate. A necessary end sufficient

(24

(16-18) b,
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condition that & medium be isofropic is that its elastic potential ¢ = ¢(Iy,
L, I;, T) where I, Ia, and I are the fundemental strain invariunis,

In the usu al approximate theory of elasticity, the elastie potential ¢
for erystalline media (another name for non-isotropic media) is taken
as & quadratie function of the strain tensor conponents. It is tacitly
assymed in the usual approximate theory that a special privileged
reference frame, determined by the axes of the crystal, has been
chosen. The coefficients of the quadratic form are accordingly not
gealars but components of a tensor of rank four which depends on the
orientation of the crystalline axes.

Stress-Strain Relations for an Isotropic Medium. A\ D
Consider the clastic potential ¢ for an isotropic medium as & fUnctlon

of the strain tensor e, Since e. is symmétric, we have ErpenE (e,. + €l

In ¢, we shall write 4(e. + &) wherever &, oceurs, and thus we see that

2% 2
D6 Oty 07\

W

(16-19)

5 R - .
with the understanding that in E')d) , 82y, alb the other ¢’s (including e,

for that s, ) are held constant, so that in this differentiation no atten-
tion is paid to the symmetry relafions e, = ¢n.

We saw in Chapter 15 {(see 13- 29) that under a virtual displacement
the variation of A, and hens\e of the strain tensor e,, was given by

(16-20) Bepy = j&hm = k() + By (o) 6],
sinee by = gy, — 2% But dg,; = 0; hence
a8 :—:ﬁ-ﬁena = 13‘3[1@(6 D T+ R (32) g1
ot ,J\
(16 21) &1; = hﬁ (32). (eand B are summation indices )

on uging condltmns 16-19. Now, for an isothermal virtual displace-
ment, formula 16+ 15 reduces to p 8¢ = T¥(8x,) 5, and so for an isotropic
medium

{16.22) P 29 B (62,) o = T(02,) 5
aiaﬁ
From the arbitrariness of the virtual displacement and the fact that

_ T Throughout the remaining part of this chapter, & mere repetition of an index
n a term will denote summation over that index.
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ki = 8% — 2¢; we obtain the stress-strain relations for an isotropic medium
a
(16-23) T = p(—ql —~ 2¢ _E)i)

We shall put this stress-strain relation in another form. Now by
definition ¢, = g™, and hence

x
Je,

=95,
O¢;; g O
Obviously N\
2% _ 090 \
ae:‘-j B beﬂ E)eg,- p \’ \\
and hence « \
a¢ ) a¢ & ":(‘
16-24 Lo
( ) aEij g)\ E)ej‘ .”‘j\'\
Define the mixed stress tensor 7% by ’
(16-25) T8 = g5, 77 0

(= g5, from the symmetry of the stre@'j:éliéor). Then with the aid

of 16-24 in 16-23 one ean show readﬂy that the Jollowing stress-strain
relations hold for an isotropic mediygi sy

(16-26) 7 - o35 - 2 55

From the principle of Qeﬁskrvation of mass pdV = pydVy, and from
the fundamental result\l5- 5, we see that

(16-27) .\~~1~;; =pV'1-2I + 4I, — 81,

in terms of thesitain invariants I,, I, and I; for media, whether iso-
tropic or nat“Since I, Iz, and I; are respectively first degree, second
degree, and* third degree in the strain tensor components e, we see
that tow first approximation p = py; i.c., volumes are also preserved to
a,ﬁgsj} approximation. Hence o the same degree of approzimation, the
shiegs-strain relations 16-26 for an isolropic medium reduce to Hooke's
law of the usual apprezimate theory

(16-28) ' TS
where ¢ = o,

_ o
-3¢



CHAPTER 17

TENSOR CALCULUS IN RIEMANNIAN SPACES AND THE

FUNDAMENTALS OF CLASSICAL MECHANICS
O
Multidimensional Euclidean Spaces. O K
Tn the last two chapters of this book we shall attempt to give S0Me
indications of a more general tensor caleulus and some of> its 4pplica-
tions. Although our discussion will of necessity be brtei\ this fact will
not keep us from going to the heart of our subjéeh” Our study of
Fuclidean tensor analysis can bo used advanta,g@ualy {o accomplish
this. LV
Firet of all the subject matter of Chaptemg 10, and 11 ean obviously
be extended to n-dimensional Tuclidean kpates, where n is any positive
mteger. There will be » variables Wﬁerever there were three before,

and indices will have the range 4.2, .-+ to n with the consequent
summations going from 1 to 7 For example, the squared element of
are in rectangular coordmates\y N T -
a7-1) \ d52 = E (dy?)z,
i=1;
while in general cot))'dmates b 2k e, 2t
(17-2) \ ds* = goglat, a2, ++ -, a*) da® dof,
where ,J\ 3
17.3)N8 gt s WO
( ,%g \ gaﬁ(x y &y ’ Z ax axﬂ

the ¥-dimensional Euclidean metric tensor (see 9-15). The n-dimen-
sional Kuclidean Christoffel symbols are

; 1 bg‘, agm agmB
(17'4) Fa3($l, .TZ, Ly, x”) = é ( # +< xg dx® !
where the g,; are defined in 17 3 while
Cofactor of gz, in ¢

g

(17‘5) gaﬂ(xls x5 ey &) =

95
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in terms of the n-rowed determinant
gn, iz, vy
Gaty G2z, s f2n

(17-6) I RETVYRRY

Galy Guty **°y Oan

Riemannian Geometry.!

An n-dimensional Riemannian space is an n-dimensional manifold
with eoordinates such that Iength of curves is determined by means of
a symmetric covariant tensor field of rank two g.e(z, xz,\'-\n;\, z"} in

such a fashion that the squared element of arc .\
Q17.7) ds? = goge) da® da® - O
is positive definite, L.e., g5 dz* dz® = 0 and is equal #6 zero if and only
if all the da™ are zero. The length of a curvepds fi(i) given in terms
of a parameter, i\\i&j then by defindtion
Chi .
~ gis(z) dat do
17-8 ‘;y‘ l/ — ——di,
U7-8) X ii t di df
It e?m be proved by rather long alge-
2 (t,) braie manipulations that from the positive
) definiteness of Fap d2* da® follows the posi-
A Mtive value of the determinant of theg,,, i.c.,

2! (ty)
ot (£

Fra. 171,
'x‘t. qu, G, -+, Jin

(17-9) NP I =] L > 0.
."\';.\" Ty {fnzy =+ ‘y Gnn
The ph(ory of a Riemonnian space is ¢ Riemannian geometry,
Ehzsmt ag in an n-dimensional Fuclidean space, we can derive the
corfravariant tensor field of rank two g*(at, 72, « -+, 2*) and thus have

o

\a§' our disposal the Christoffel symbols of our Riemannian geometry

; 1. {02 5] a
(17-10)  Tiy(et a2, --v, g7 _ L (ﬂ er _9_)

ol ) 2? o | 02'  oxf
Notice th_at the Riemannion Christoffel symbols depend on the funda-
menta.l Riemannian metric tensor g,; and its first partial derivatives.

Unlike the Euclidean Christoffel symbols, it is impossible in general

to find & coordinate system in which all the Riemannian Christoffel
symbols are ZeT0 everywhere in the Riemannian space. This is due to
the fact that it is in general impossible to find a coordinate system
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in which the fundamental metric tensor Ous hag constant components
throughout space. It is to be recalled that in a Euclidean space there
do exist just such coordinate systems, i.¢., cartesian coordinate systems
and rectangular coordinate systems in particular.

We can, however, prove that there exists a coordinate system with
any point of the space as the origin, i.e., the (0, 0, -- -, 0) point, such
that all the Christoffel symbols vanish at the origin when they are
evaluated in this coordinate system. Buch a eoordinate system is called
a geodesic coordinale system. We shall prove that the coordinates ¥
defined implicitly by the transformation of coordinates ~
(17' 11) xt = Qi -+ yi - %Eriﬁ(xls xa: Yy x“)]":a"yaya ’.\“\
are geodesic coordinates. O
A direct caleulation from 17-11 yields the needed fort@ulaa

ERNC
(%)UZ*[P@'@ \w\JL,q.

where the 0 means evaluation at the orlgm of the ¥ coordinstes. Now,
under a transformation of cooulmaf:es, the Christoffel symbols of a
Riemannian space transform 1 by the rule 10-29 for Euclidean Chris-
toffel symbols. Tet *I“ﬁ(y W s 4™ be the (Riemannian) Chris-
toffel symbols in the y* c;zo{dinates Then

; N\ ba:" 22 Oy
(17' 13) *P:xﬂ yl; yz::' ] gn) = I‘:W(xl} a? ayabyﬂ bSB
o)t ot oyt
\,@ * 5y o o0
A ‘
Now wa see from the transformation of coordinates 17- 11 that 2t = ¢*
when* = 0. In other wordh, the origin of the ¥ coordinates has co-
rdifiates ¢ = gt in the z* coordinates.
1f we evaluate hoth sides of 17-13 at the origin of the y* coordinates
and if we use formulas 17-12 in the caleulations, we find

(17-14) [¥Tist, 22 - 0 d = O-

In other words, the ys are geodesic coordinates.

(17-12)

 With the difference that the number of variables now js 7 and the indices
have the range 1 ton. The proof is practically a repetition of that given in note 4
to Chapter 10,



98 TENSOR CALCULUS IN RIEMANNIAN SPACES

Curved Surfaces as Examples of Riemannian Spaces,

Obviously any Euclidean space is a very special Riemannian space,
A simple example of a Riemannian space which is not Euclidean is
furnished by a curved surface in ordinary three-dimensional Eueclidean
space. This can be seen as follows. Let ¢* be rectangular coordinates
in the three-dimensional Eueclidean space, and let the equations of a
curved surface be

(17-15) v = iz, )
in terms of two parameters 2! and 22 Then the squared element, 6P arc
Jor points on the surface 17-15 ig A

3 2% é
(17-16) dst = 3 Ay = guale, ) dade®

\ h

(= and @ have the range 1 to 2 and correspondmg SQmmatlons go from
1 to 2), where
° bf"(x‘ =) ofieh, )
17-17 1 2%y = e
( ) Jug (x y & ) aEI. \ am
So a surface in threc-dimensional Euchdean space 1s a two-dimensional
Riemannian space.

ad

L Exercise

The surface of & sp;‘[e}e is a two-dimensional Ricmannian space.
Find its fundamenta)l\ﬁmetnc tensor and itz Christoffel symbols. The
surface of a sphere of fixed radius r is
given hy

y! = rsin 2t cos 27

y? = 7 sin 2! gin 22

Y = r cos !
Therefore the fundamental metric tensor
is given by gu=17% g =1ga=0
gz = r*(sin zH)2.  Henece

1
o =, 12 g3 -
9 =p =0 g r2(gin 2%)*
Fia. 17-2. The Christoffel symbols are then

14 -
T3, = —sin ot cos 24, T, = T3, = cot 2,

and all the other Christoffel symbols of the surface of the sphere are
Zero.
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The Riemann-Christoffel Curvature Tensor.

It was scen. in Chapter 11 that covariant differentiation is a eommu-
tative opetation in three-dimensional Euclidean space, and by exactly
the same type of reasoning this is also true in an n-dimensional En-
clidean space. To establish this result explicit use was made of car-
tesian coordinates. Since such coordinates are in general not available
in & Riemannian space, we cannot use that type of proof. In fac, co-
variant differentiation in o Riemannian space is not in general commu-
tative. We shall find a formula (see 17-19 below) that makes clear the
non-commutativity of covariant differentiation in Riemannian spaces,

In obtaining Laplace’s equation in curvilinear coordinates for cons
travariant vector fields in a Euclidean space, we had to caloulate'the
cecond covariant derivative of a contravariant vector field. (See the
bracket term in 12-23.) The caleulation for Riemannian-gpaces is
practically the same, so that we shall write down the second covariant
derivative of £(z, 22, -+, z*) based on the (Riemann'i,bﬁ) Christoffel
symbols 1%5(xt, % ---, z¥) without giving any more details (again
see brackes term in 12-23). The result is /0~

; O R i OB oF
. i M5 pe T8 RN
UT18) Eus = g ~ Ty T 1ol P

N\ b ar;u P St i T ']
.::::‘ + (_a—Q;E + I‘rf;rm - I‘:‘vI‘aﬂ)E )

From the commutativity of the pﬁrtial derivatives and the symmetry
of the Christoffel symbels Phy'= Tg,, we find

s

(17-18) g — Esa = Bok
where ¢ \J
(17-20) 50 Olew et | o i Tr,r,

AT T o T o
To justify» the notation B, and prove that they are the com-
Poneqts{hf' a tensor field of rank four, contravariant of rank one and
copariant of rank threc, we first note that the left sides of 17-19 are
the\c(;mponents of 5 tensor field of rank three, contravariant of rank
one and covariant of rank two. Hence Biyst’ is & tensor field of the
same type for all contravariant vector fields £7; ie,
T (R4 13 9 _aflr .a_xf gf_’
Ba’aﬂ(x)s (3?) = Bpup(x)g (.’L') D I’)Eﬁ axk

But, writing £*(x) in terms of £(z), we evidently have
2 O’ dz° DF

Blas@)E (®) = Blp@)¥ @) 55552 578 o
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But £°(%) are arbitrary, and hence, equating corresponding coefficients,
we obtain the tensor law of transformation for B, (z). This tensor
field is the famous Riemann-Christoffel curvature tensor; it is not a
zero tensor in a general Riemannian space. Hence £,z £y, in o
Riemannian space with nen-vanishing Riemann-Christoffel curvature
tensor. But obviously the Riemann-Christeffel eurvature tensor is
zero in Euclidean spaces. Hence &,5 = &5, in Fuclidean spaces;
this checks & result found earlier, in 11.13.

Geodesics. "\

A straight line iz the shoriest distance between two pomts‘m Eu-
clidean spaces. There are curves in Riemannian spacos that play a
role analogous to the straight lines of Fuclidean spaces, \ \ Stch curves
are called geodesics. In fact, if a Riemannian spage is & Euclidean
space, then its geodesics are straight lines. To find ‘the differential
equations satisfied by the geodesics of & Riemanhidn space, we have
to get the REuler-Lagrange differential equat%gns for the ealculus of
variations problem

(17-21) f‘ If Gii dt dt dt = nunlmum

It can be shown that the ElﬂEr,Lagrange equations for this caleulus
of variations problem are

17-22 \”3”—+ T o dx dxﬁ

where s is the arc length and Ti,(x) are the Christoffel symbols of the
Rlemanmaz\spaee In other words, if the coordinates of points on a
geodeéi&%te considered as functions xi(s} of the are length parameter
8, then ‘the n functions z'(s) satisfy the system 17-22 of n differential
equ&tlons of the second order,

1 the Riemannian space i3 Buelidean and we choose rectangular
cartesian coordinates ¥, equations 17-22 reduce to

dyi(s)
82

and hence

Y= als - BF {o* and B° are eonstants),

the parametric equations of straight lines in terms of arc length s.
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Equations of Motion of a Dynamical System with n Degrees of
Freedom.
In classical mechanies, it is postulated that the motion of a con-
servative dynamical system of » degrees of freedom with no moving
constraints is governed by Legrange’s equations of motion?

d{ oL oL
17-23 "(—) —— =10
( ) dt\ogé/  og*
If the kinetic energy T, in terms of the generalized coordinates g, ¢2,
.-+, g® and the generalized velocities ¢i(f) = d%EQ, is N
A\
T =@, - OVE @ =05 O

and if the potential energy is V(¢', 4%, - -+, ¢), then the kinetig}‘ﬁé‘tential
or Lagrangean 7 is given by L = T — V. Now the kinetie ‘energy is
positive definite in the velocities ¢%; t.e., T' = 0 and IS0 if and only
if ¢* = 0. It can be proved by algebraic reasoning that.the determinant,
g of the g,; is positive so that we can form g% in terms of the gi; — ex-
actly as in Riemannian geometry. By direcjs"g';lculation we find

9£’ ) N g

bé".:gﬁq, : .v’r’.“

) o (-2
dt(agi) - (bq“ i‘?‘f Tl \U'" e
. ~ éh; agik s
=}"§*q7+ £ 7G" + gidPs

R L T 2\og g’ .
Hence Lagrange’s equations of motion 17-23 can be written in the form

N . 1{dg:; O Oy, .. oT
(1724 i ,_(gj '_“"—'_“'T)’k=——_.'
)3 SV 0 \gn T og T o 1T T T og
MUl;‘-'Plying corresponding sides 'of 17-24 by ¢ and summing on 2
we obtain the following form for Lagrange's equation of motton.®

(17-25) I+ TR, -, O = -0 5

where T%(qL ..., q*) are the Christoffel symbols based on the gi; (¢
%y ") of the Kinetic energy of the dynamical system.
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Exercise

A symmetrieal gyroseope with a point O fised on the axis ia acted upon by grav-
ity. Let I, I, and J be the principal moments of inertia. Then the kinctic encrgy

i3 given by
= - dg‘ : 2 ol dqo : dqs L (_E._.qz '
7= I(dﬁ + - I.,mq i@ + J +eosg o

gnd the potential energy by

V = Mgh cos ¢*. The coordinates ¢, ¢, and ¢! are the Fulerian angles, M is the
mass of the gyroscope, and k is the distance of the eenter of gravity from G, Find
the Lagrangean equations of motion of the symmetrical gyroscope. Compute.alse
the element of are length of the three-dimensional Riemannian apace asstfcﬂi&cd
with the symmetrical gyroseope, , {:\

N
\/
7 x{'
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"N\/
4 »
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CHAPTER 18

APPLICATIONS OF THE TENSOR CALCULUS TO
BOUNDARY-LAYER THEQRY

Incompressible and Compressible Fluids.

The constancy of volume of all parts of & fluid in motion sometimes
plays an important role in the theory of fluid flows. A fluid in motieh
with this property is called an incompressible fluid, whercas a fnd in
motion without this property is called a compressible fluzd. i are the
contravariant components of velocity of the fluid in motioh in’ general
coordinates zf, then O

(18-1) = N

. N
are the differential equations whose mtegratipn gives the pathg of the
fluid particles in the coordinates z'. | ™

It can be proved by a direct calculattfgoﬁfhat a necessary and sufficient
condition that the volume ONP
(18-2) S S fo/§ dat di? do?
of arbitrary portions of thé}noving fluid be p_reserved 1 is that the
divergence of the velogity field u be zero, Le.,
(18'3) ,, uf;:[],
In 182, ¢ is he. determinant of the Euclidean metrie tensor gi;
(dst = g;; dat g, and the comma in w5, stands for covarant differen-
tiation baged'oh the Euclidean Christoffel symbols Ty, In ot-hgr words,
a necessgm*é}, und sufficient condition for an incompressible ﬁz::zd 45 that the
”doﬁityl‘s}ebtor field w' satisfy the portiol differential equation 1'8 3 A
%—‘ﬂéﬂcé at formitla 13-6 shows that the condition of incompressibility 13
cquivalent fo
(18-4) oV _
e

If we recall the Navier-Stokes equations 13-3 for the motion of 2
viscous fluid, incompressible or compressible, we lnow that the equation
of continuity

(18.5) 2 4 ()= 0

103
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in general coordinates 2% merely states the constancy® of the mass m
(18-6) m=JSS S, 2, 2% 0/g do' da? da

of any portion of the moving fluid. An evident consequence of the con-
ditions 18-3 and 185 is that the density p(z?, 22, 2%, &) (an absolute
sealar) satisfies the condition

D o)
(18-7) Ly P,
of Oz A
which states that .
dp )
(18-8) dtz-o ’ O

along any chosen path of fluid particles. This means tﬁat"l’ &7 con be
taken as the defining condition for an incompressible ﬁw‘d in view of the
continuity equation 18.5. The Navier-Stokes egtidtions for an ineom-
pressible viscous fluid reduce then to the xf@()wing system of four
differential equations in general coordinates £%

% 3

du’ : C(ONY, dp

— B,F 'Y Yoo 47 i
(18-9) Py Pl uy».,, ;9 T X

Uy o =0, N

For an incompressible fluid, thetdensity p(a?, 27, 23, ¢) is given subject
to condition 18-7, Then the four differential equations 18-9 will have
as unknowns the three #elbcity components #!, 4%, % and the pressure
plzl, 2% 2%, §) of the ﬂﬁh _

The situation ig.different for compressible fluids. The Navier-Stokes
equations 13.3 gx&four in number with five unknown functions ul, u?,
%, p, and p, {Te'make the problem determinate & fifth condition must
be impossq.:\' This is usually furniched by the “equation of state,”
Which‘ii.l’ﬁl.e isothermal case is of the form

(18C10) P = 1(e).

Boundary-Layer Equations for the Steady Motion of a Homogeneous
Incompressible Fluid.t

We shall now restrict ourselves to the steady motion of a fluid with-

out any external forces, so that X* = 0 and all the quantities %, p, p are

independent of the time ¢ If in addition we assume that the Auid is

homogeneous, i.e., pis a constant, and incompreasible, the four unknowns

} The remaining part of this chapter i an exposition of some unpublished re-
searches of Dr. C. C. Lin. These results were presented by Dir, Lin in my seminar
on applied mathematics.
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', p must, by a reference to 18- 9, satisfy the four differential equations

) . A
s o .
w; = vty — gv —

(18-11) az’

7
Wy =0,

where  is the pressure p divided by the constant density p of the
fluid, and the constant » is the kinematical viscosity. Since the co-
variant derivative of the Fuclidean metric tensor g,; s zero, it follows
from 18-11 that the covariant voctor components u; = gau® of thes
velocity ficld and the function = will satisfy the system of differentidl

equations <O
. , A O
(18-12) W IR g O
;= 0. R4S
For the treatment of “boundary-layer” problpaig¥connected with
an arbitrary surface, it iz convenient PN
to take a system of space coordinates ™ %

in which z!, 2 are surface coordinates N\
and z* is a coordinate measured alongy
the normals to the surface. Thus
a* = 0 will be the equation of thegiven
surface. If we allow Latin indites to
run over the range (1, 2, 3)%nd Greek

indices over the range %2}, we have Fia. 18-1.
the following fundamental metrics:

(18-13) A &gs5(t, o2, &) dot dz’ In 3-space,

and N '

&
{18.14) .§~ ds? = gq(2, a2, C) d™ da®

over th\é surface

<‘ yuf #* = C, a constant.
From. the manner in which the coordinate z* was chosen, it follows that
in 3-space t

(1815) ds? = [AF dat dzf = ga'g(xlg xz, 3:3) dz" dxﬂ + (dma)z

! In Riemannian geometry, this is sometimes ealled the “geodesic form” of the
line element, Such forms of the line element were used recently by Dr. W. Z. Chien
in eounection with his researches on the intrinsic theory of plates and 'shelis {see
references). Dr. Chien presented some of his work in my seminar on applied mathe-
matics and made some excecdingly helpful caloulations in connection with intorest-
ing peometric ideas arising in his and Dr. C. C. Lin’s work.
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In other words, the Fuclidean metric tensor g;;(z!, 2% 2%) is such that
(18-16) g33 = 1, Gz = Guz = 0.

We shall henceforth consider transformations of surface coordinates ', 22
alone so that the coordinate #°® may be regarded as a scalar parameter
under a transformation of surface coordinates. To emphasize this
fact we shall use the nofation 2° = 2y = 2% Thus, in the new notation,
18-16 can be written
(18-17) g0 =1, Gou= oo = 0. Q)

We saw in the previous chapter that a surface can be conmdgrqd as a
bwo-dimensional Riemannian space. There is thus at our dq,spoqal the
Riemannian tensor caleulus of the previous chapter for immediate use
in connection with the surface 2" = constant. We Sha.ll‘uqe a semicolon
o denole surface covariont differentiation in contga@)stlnctlon to the
commg for covariant differentiation in the envelaping three-dimensional

FEuclidean space. O

To express all covariant differentiations With respeet to space eo-
ordinates in terms of covariant differentifions with respeet to surface
coordinates z, z? and partisl diffelentiatlons with respect to 2% con-
sider first the Huclidean Christoffelsymbols T% in the coordinates

', o%, #® I 4, j, k are all in the tange 1, 2 no reduction is possible

unless a special surface coordiiiate system is chosen; if one of the
three indices is zero, we ha{ve

(18-18) fx -~ ézg;ﬁ I = % = — 29“‘ sy,
These are ewdgnt}y tensor fields with respect to transformation of
surface coorquates, and they shall be denoted by I s and T respec-
twely hé other Christoffel symbols T%, in which two or all of the
%, §, & arepero, vanish identically.

W\1thr \the help of these relations, it can be easily verified that

'»\s: 4 auﬂ b’u
\/ Uog = Sy Une = al,,—|~1“91¢:ﬂ,
(18-19) 2,
U = E)_- + Pﬂuﬁs Ugp = Upg + T pplin
O
(18-20) ;= b__“o + uly — Ty,
gﬂ.kuo,_., E = —g%fg agu:: + (1)0,
18-21
( ) " %y, Baus Baua .
g U5 p = + 21T @a,
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where
(I)n = gaﬁﬂng;a:'g + Zfaﬂud;ﬁ - PgI‘iun + F?gﬂw

(18-22) l@a = BTiTSup + Toug + 0" Uuspy — 21‘2?2 — Tl
I
- (T35 + T374 Jug,
do not involve differentiation of u; with respect to "

LTet us now censider the analytical nature of the system 18-12 of
four partial diffcrential equations in the four unknowns =, u, %, By(S
using 18-19, 18-20, and 18-21, we can put this system in the nomgal

" b solving for 2% Ol R,
form with respect to 2° by solving for il from the '?q@ataons

Ny
774

. ou . - $
of motion and for b_g from the equation of contlnulty..\’g?‘hus
a: "

o g (buo ) My duo )
o _ ¥ =( re (\Y _pe 2
Ozl “ Falind u Fa vl + Tatly +.¥; \Oz% “ Bx® + &),

Oy _ 1 “(% I‘ﬂu)—l—lu‘g(:%; +T u)+lﬁ
Hyu + o g ’R ’ o33 a0 paxa

02 0
(18.23) 4 & 0z R o
W 548 _ rella
( Lo ™ Teom +‘1’°‘)’
auo 8 L
[ 2an ™ e+ T,
L™
where Oto and P i t; first equation may be expressed in terms of
Q! 7~
o O . .
4 and E)_u:;; E?y\'ihfng the last equation. Thus, the highest derivatives

of all thg’%}iables with respect to z° have the coefficient unity in

M ] iy . ; 1
th?isﬁ efuations. Hence, if , U, U Pt are given as functions of ¥
aﬁi 2% on the surface 20 = 0, the solution of the problem is uniquely
determined.

This normal form 18-23 of the system of differential equations, how-
ever is not analytic in the small parameter », the dmporfant cuse in
asronautics, in the neighborhood of » = 0, and is consequently incon-
venient for the application of the method of successive approximations.
We therefore make the transformation of variables

mﬂ

(18-24) v
: 4

i
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to bring it into the desired form. We then have

(® dw | ow dw dw
oy T g u® — v( Bf —I—u“‘“—;) + v%(“— el P -{-(Ivo)

A oz dr? dr
D%y du, ( due
1 .. 3 Pﬂ _ zrﬁ 3
bg'ﬂ wa§'+ uaﬁ-{-axa-l-lf i) Ug ag_
(18-25) 1
418 a”‘*) — v
5 ag. [*]

ow
k5?=—ugg+v*I‘§w. A

Let us note that ®, and @, are linear in the small parameters* through
the term in 1y, (cf. I8-22), and also depend on »* through( the geometrical
quantities, which are functions of 2° = J3¢. Indeed, 1t can be shown?
that the surface metric tensor g,5 is @ quadratic funei’wn of x°, while all
other geometrical quantities moy be expanded as mbwer series of ' con-
vergent for | 2° | < R., R, being the mﬂu\}num magnitude of the
prineipal radii of eurvature over the Qsﬁxrface under consideration.
Hence, the right-hand sides of the equatidns 18-25 are Taylor scries in
#, and the solution of 18-25 may belearried out by cxpanding cach of
the dependent variables as a powen series of 2, convergent for all finite
values of # for which | /¢ | <R

If we try to solve 18-23-by the same type of expansion, either the
series are asymptotic, orthdy may terminate; but in general we cannot
find a solution satisfying all the required boundary conditions. In
fact, the initial approximation is easily verificd to satisfy the non-
viscous equa,tlon\(v = 0). The boundary conditions at infinity and the
condition u, S Bat «° = 0 arc then sufficient to determine this approxi-
mation completely. Indeed, the boundary conditions af infinity are
usually; M that the resultant solution is potential. Then the initial
apprommatmn 18 an ezact solution of the complete equations 18-23.
Howe‘ver, the boundary conditions w4, = 0 at 2 = 0 cannot be satisfied

Gn'general. The effect of viscosity ean never be brought into cvidence.

This shows that the more elaborale treatment described ohove is ahsolutely
necessory.  The non-viscous solution {usually potential), however,
serves as a guide for making the exact solutions s‘atlsfy the boundary
Ef;llldltlons at infinity. This point will be discussed in more defail

oW

Let us now proceed with the solution of 18.25 by writing
T=a® 4 S opr® ... e
(18-26) Ue = + VS 4P e e
w= ww)_}_.\/‘,,w(n_i_yw{z)_!_ cae e,
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Corresponding developments for the geometrical quantities g,g, T'pg, <+ -
must also be used. The initial approximation gives

(uﬂu_ +w%=_ﬁ+%’
@i FYe 2 o
o
(18-27) ; 0-5—5
ow
!€8+¥=03 ~

L
where the superseripts of the initial approximation are droppeds, ‘In
these equations, ¢ is & scalar, and the metric tensor is a.5(z!, @0 béing
fas(2t, 77, %) evaluated at 2° = 0. The conditions over the’ surface
¢ =0arewu, = 0andw = 0. The condition at infinite f«ié seb according
to the following considerations. For a large but.finite value of ¢,
the value of « js still small. Hence, the solutionsthay be expected to .
pass into the non-viscous solution close to the suriace if ¢ is large.
Thus, for the initial approximation, we ma{ ldy down the conditions

(18-28) g = Ty T = 7 TOPNE> @,

where %, and 7 are functions of #* andha?, being the values of u, and =
of the non-viscous sofution at a%= 0. The initial approximation is
then completely determined. ~3%

If %, and = differ from @ and 7 by quantities of the order of » for
¢ =h, then an approxim’ﬁi} solution of 18-12 is usually taken to be
given () by the nonjscous solution for { > &, and {b) by the solu-
tion of 18.27 for {2 h. The quontily h/7 is known as the “ thickness
of the boundarplegier”’ and is arbitrary to a certain extent. _For ex-
ample, we ragy-define & to be given by (say) three times b of the
equation’\f;\‘ ’

(18-29), fm(aa — ) dt = B,
N 0

N\

#hith is in general different according to whether « = 1 or 2. This
inftial approximation is usually known as the boundary-layer theory of
Prandtl. Incidentally, we note that 7isa function of z* and * alone,
by the second equation of 18-27. Hence, by 18-28, 7= w{z!, x_ﬁ),
which is known from the non-viscous solution. The first and t!u.rd
equations of 18.27 then serve as three equations for the velocities
U, and w, .

The higher approximations in 18- 26 satisfy certain differential equa-
tions obtained together with the derivation of 18-27. The boundary
conditions at ¢ = 0 are ¥ = 0, for any approximation. The bqundary
conditions for the nth approximation at infinity will be specified by
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using the nth approximation of the asymptotic solution, which will in
turn be determined from certain boundary conditions related to the
(n — Dst approximation of the convergent solution. Since we are
never concerned with higher approximations in practice, we shall not
go into further details.
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NOTES ON PART I

Chapter 1

t. In the modern quantum mechanies of theorctical physics, matrices with an
infinite number of elcments as well as with a finite number of elements are used
very widely. The clements of these matrices are often complex numbers. THe N

reader is referred to the bibliographieal entries under Born, Jordan, and Dirag,
2 AN
2. Tor applications of matrices to the social seiences the reader is preferred to
the references given in a reeent paper by Hotelling. g >

4 ’o‘

3. We shall deal for the most part with matrices whose e}eménts'are real or
complex numbers. It is possible, however, to deal with mairices whose elements are
themselves mairices. We shall have oceasion to use a few sugh ‘matrices in connection
with our dizcussion of alreraft flutter in Chapter 7. O

INY
"
Chapter 2 2\\,/

1. For the properties of determinants, Hrgea} equations, and related questions
on the algebra of matriccs, see Bocher’s J ag'tmduct{on to Higher Algetra.

2. Cramer's rule for the solutionfq’f' linear algebraic equations is given in maost
books o algebra. In our notatignsit can be stated in the following manner. If the
determinant o = | at | of the nlegnations

+8 J .. i
K g
in the 1 unknowns o, T +, & is not zero, then the equations have @ undque solution
donty Q)
£ D . Aa‘
.\“ oY= —7
& a
: 6Ehe 7 ; ; ing the elements al, &7
where A* g nrowed determinant oblained from a by replacing )
*+-, o} of\the dth column by the corresponding dements BY B =0y B

AN _
“3»/The rule for the multiplication of two determinants takes the following form
%}\our notations. If & = | a; | and b= | b | are two nerowed determmani:?, then
the mumerical product ¢ = ab is ilself an n-rowed determinant with elements ¢ given
by the formula o
&= a bl

4, Tt can be shown that s, the trace of the matrix A7, is alto equal o the suin

of the rth powers of the n characteristic Taots of the matrix 4.

5. The recurrence formula 2-6 for the coefficients gy, - -+ G2 of the Ch,atheriStiB
funetion of a matrix ean be derived from Newton’s formulas; see Bocher's Introduc:
tion to Higher Algebra, pp. 243-244, for a derivation of Newton’s formulas.

111
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Chapter 8

1. Toprove that the matrie exponeutial e is convergent for alf sguare matrices
4,%et A = || a || be an n-rowed square matrix, and Tet V(A) be the groatest of the
numerical values of the #? numbers a; — the greatest of the moduli of the a if the
a;: are complex numbers. Then each element in the matrix A ¢ will not exeeed ni~1yi

in numerical value. Hence cach of the n? infinite series in ¢ will he dominated by
series

nV: ndle 1
L4 Vb v b e = (7 —1) 41,
2! 3! 7
Hence il the #? numerical series in ¢? converge. This means that e is converg}nt
far all square matrices A. A

In the terminology of modern functional analysiz and topological %ﬁac\es, the
V(A) is called the norm of the matrix 4, and the class of frowed matrices with
the operations of addition and multiplication of matrices, Toulti lication by num-
bers, and convergenee of matrices defined by means of the norm V{4 — in other
words, ¥{4) plays an analogons role to the absolute value q;\'qﬁ}dulus of a number
in the convergence of numbers — is called a normed lindtw'eakg. Other equivalent
definitions of the norm of a matrix are possible. Farvezample, ¥(4) ean be
taken ag AN

I / Z(a;:)e \ ‘x\
=1 " )

if the elements a§ of the matrix A are rea.lfﬁiimbers. Whatever suitable definition
of 8 norm is adopted, the acrm V{4) gffsf}natrix will have the following properties:

(1) F(4) 20 and =03f and only if A ia the zero matrix,
{(2) V4 + B) < Fd) + V(B (trisongnlar incquality ).
(3) ~\VAB) < V(A)V(B).

From property 3 it follows that ¥(As) < (V(4))", a result that mskes obvious the
usefulness of the notig w:}a norm for matrices in the treatment of convergence
properties of matrices ™

The eclass of mbirices discussed above is only one example of a normed linear
ring. The first gafieral theory of normed linear rings was initiated in 1932 by
Michal and Martin in s paper entitled “ Some Expansions in Vector Space,” Journal
de mathéq&fq}les pures et appliquies.

2:3Tho special case of the expansion 3.7 when F(A) is a matric polynamial i3
knqvc:ﬁ as Sylvester’s theorem.
- NI the characteristic equation of a matrix Ahas multiple roots, then the expansion
37 is not valid. However, 5 more general resudt ean be proved. For the case of
matrix polynomials F{A) see the Duncan, Frazer, and Collar book. The more
general cases of matrie power serigs expansions are treated briefly in a paper by
L. Fantappie with the aid of the theory of functionals, since the elements Fi(d)

in the F(4) are functionals of the numerieal function F(1). See Volterra’s book on
funetionals {Blackie, 1930).

3. Another equivalent form for the » matrices Gy e, G
M(x)

(df(_,U
dh Jfa=a

G =
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where the A; are the characteristic roots of the matrix A, f(3) is the characteristie
determinant of 4, and MQ\) = || M) || is & matrix whose clement Mi(\) is the
cofactor of A8! — af in the characteristic determinant f(A). Notice carefully the
position of the indices 7 and 7.

Chapter 4
imat ; {t~tod) dX(t)
1. A good appreximation to the solution X{#) = [¢ 1X of %% A X1}
f— ) —ta)"
can be obtained by taking ¥4+ {! —f)A 4+ E-2—|02-A"‘ o %A" in the

place of the infinite expansion for e~ For many practical purposes n = 2 would
be large enough to give a good approximate solution. The approximate solution
can then be written AN
¢ty L

X=X+ —&)d X0+ o AX,, N
where X, is the column matrix for ¢ = f; initially given. m'\'\ ;
2. If the sohztion of the matrie differentizl equation

dx() ~
(1 o~ A% (X n)‘“{&}.
has been found, then the solution of O

dX (i N

{2) T() =(4d + bI)X(cI.;’ b {X(1o) = Xy}

con be written down immediately. In‘fd(fb, from the second property of the matrie
exponential given in Chapter 2, wedte that ¢4 T = ¢, where ¢ is the numerieal
exponcntisl. Hence by formuly-<d\3 we see that the solution of equation 2 is ob-
tained by a mere multiplicat\iQn~By & of the solution of equation 1.

\ \ 5 Chapter §

1. The read“er'.\iér Teferred to Whittaker's Analytical Dynamics for a treatment
of Lagrange’ di,,ﬂ"l;i‘ential equations of motion of particle dynamics. For some
engineering é%ica,tions, the reader is referred to Mathematical Methods in Engi-
neering bpKdrman and Biot.

'\
2\} Gonsult the references in the above note.

N\

. Chapter €

1. ¥ only the fundamental frequency is wanted but not the corresponding
amplitudes, then the application of Rayleigh’s prineiple may be preferable. See
Blementary Mairices by Frazer, Duncan, and Collar, pp. 310, 299-30L.

3 2. A special case of Sylvester’s theorem is what is actually used; see expansion
0,
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NOTIES ON PART UII

Chapter 9

1. Although little use has been made of the tcnsor caleulus in plastic deforma-
tions, one would suspect that a thoroughgoing application of the fensor caleulus
to the fundamentals of plastic deformation theory would prove fruitful.

9 For some elementary applications of the tensor ealenlus to dynemic metcor-
ology, the reader is referred to Ertel’s monograph.

3. We shsll deal briefly with Riemannisn spaces {certain eurved spa.c[:{) and
their applications to classical dynamical systems with & finite number of \Jegrees
of frecdom (see Chapter 17), and to fluid mechanics {see Chapter 18), \

¢\

4. A discussion of the fundamentals of coordinates, cuordina:c'é systems, and
the transformation of coordinates in the various spaccs, includgng’zE-&alidcan APUcCs,
is out of the question here. The readers who arc interesteg.n medern differcntial
geometry and topology will find ample references in tl}c'\l:ﬁﬁliography under the
entries for Veblen, Whitehead, Thomas, and Michal, « N

Chapter 10 , x',\\ g

1. Some writers, especially those dealing mith\physical applications, like to think
of the contravariant and eovariant components of one object ealled a vector., For
example, if & aro the contravariant epfbponcnts of a velocity veetor field, then £*
and g;;& can be eonsidered the contrayariant veetor and covariant veetor “repre-
sentations” respectively of the same Dhysical abjeet called *veloeity vector field.”
Thizs point of view, however, iz Tintenable in spaces without a metrie g.

2. The importance of<the Euclidean Christoffel symbols for Euclidean spates
is, even now, not Va['j&fw\éll Tnown.

3. Bince
3

s oy’ oy
eplaty 28 e5) = Zlafa%g (3!, 3%, y® are rectangular coordinates),
Y i= .

2,
we obtaimfrem the rule for the multiplication of two determinants, the result that

oo a'l‘ ¥ i
g =g [ =7 where J = t b:“ N i the Jacobian determinant, or the functional

:détcr}nimnt, of the transformation of coordinates to rectangular coordinates ¥t
\”\3 from general coordinates z?. Hence J = 0 since we deal with transformations of
coordinates that have inverses. This means that the determinang g # @ for all cur

“admissible” transformations of coordinates.

4. The following steps establish the law of transformation 1029 of the Eu-
clidean Christoffel symbols; exactly the same method establishes the corresponding
law of transformation for the Riemannian Christoffel symbels to be discussed in
Chapter 17.

Since g, are the componeuts of the Euclidean metrie fensor we have under a
transformation of coordinates from eoordinates x¢ to eoordinates &*

oz o’

(G) aa'ﬂ(il: ) = gﬂl’{xl! x*, xs)a_ﬁ"' a_i.}'g'
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Differentiating corresponding sides of (2) we oblain (considering the Z¥ ag inde-
pendent variables)

O w WO At o 2t B
@) oz= " oxr o o oz | Pbr oz o | T Par o ozn
Interehange « and & in (b) and, noting that
Dk il
DETDET AT I
obtain
Vg _ O 22 200 [ W o] [
(€ opr ~owr oroPor | Warozeos || Wom ot or
Interchange § and & in (¢) and, noting that \
28N
asmr B 023:? , R, \...
oif 03" bz" o Oy
obtain N
@ Oas  Offus 02" D D2P Fat_ o on* o, (1
28~ ow oamom b T W sz or ¢ | ™ brentas |

Add corresponding sides of (b) and (d) and subtract corresponding sides of (¢) after
interehanging p and pin the first terms of (&) and after inxe@hanging » and pin the
first torms of (d). ‘Then take § of both sides, obtaining \

© 1(35«3 e b.?;ng) 1(bg,,, O %)’gﬁﬁe_}gw 1 or o
3 =Nz "o

— - ; =t T i E g
oz T op5 oxr ) " 2\ort T or 0nh ostddRE 2% o o0 o7
1 %t 2

D om0 oan o7

the terms enclosed in brackets in (b "Ec) and (d) eanceling out in the add,iti_ons and
subtractions. On interchanging ;£ahd » in the last terms of (¢} nnd on recalling that
Trpe = sy We get x\™

1{0905 O%us o0 M (00 Ofup Oguw\etdwds’ 0z "
) R _ Clag N Qe | THER Ry e — - e SR
e 2(35"‘ T ) a\apr Tow o Jorafer T or oFf ost

Now e\
\V Yozt 08°
{ \/ iy _ el
o Q& 9= o
:‘_’-[ultiply"%g‘ ¢orresponding sides of (f) and (g), summing on o, and uging the identi-
fon i)
/ oz 0z°
g o = § QM Gor = 8},

oo oz @
we readily obtain
1o (%on | as 2g L [o0 oge Ogw\OOEE ¥ o8
—gie| Vel | e Ofapg) _ 1 Gor  Ofpo THZTLE o e
2? (b:’z‘:“ t o w) = 29""(%# tor o joreor o ortdd
from which the desired transformation law 1029 follows immediately on recalling
the definition of i‘-iﬂ and I‘_::_.
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Chapter 11

1. Formula 11-12 for the covariant derivative of a tensor field can be estab-
lished very quickly with the aid of normal coordinate methods of modern differentiat
geometry. See the two Michal and Thomas 1927 papers.

2. In Chapter 17, we shall ses that the answer is in general in the negative
for the more general Riemannian spaces.

3. The operation of putting a covariant index equal to a contravariant index in
8 tensor and symming over that eommon index is ealled contraction. A contraction
reduces the rank of & tensor by two: by one contravariant index and by one coyari-
ant index.
O\
Chapter 13 y '\ .

1. 'The Navier-Stokes differential equations of hydrodynaxmw are dizenssed
in Lamb’s Hydrodynamics.

2. There are two viewpoinis in hydrodynamics: oiie 1s\he Eulerian point of
view in terms of the Eulerian variables; the other is the Bagrangean point of view
in terms of the Lagrangean variables. For a non-vis cous fluid, the Eulerian hydro-
dynamieal equations are the eguations of motion, the fluid from the Eulerian point
of view, and the Lagrangean hydmdynammsl qquatmns are the equations of motion
of the fluid from the Lagrangean point of wiew. The Eulerian hydrodynamical
equations in rectangular coordinates y‘ are «ribta,lned by putting » = 0 in the Navier-
Stokes equations 13-2.

Euletian Hydrodynamical Equatmns. \
2\ uabu‘ lap
Yo T o Ty
X NN +a(pu“)
Ko B R
If of are the :reiptalngular coordinates of a fluid particle in the initial state of the
fluid, and if thegiat, o?, of, 1) are the coordinates of the particle at time ¢, then the
Lagrangea&k’yﬁmdymmical equations are
& z b*y‘ a_y‘ 1 ap -0
RN\ & Y RIPEY
\’"‘\} . byl'. ayl ay!.
ot " o0
% E %P
20l 0aF Qo
o oyt o
oat’ dat’ a?
For a treatment of classical hydrodynamies, including treatments of the Eu-
lerian differential equations and the Lagrangean differential equations, the reader i8
referred to Lamb’s Hydrodynamics and to Webster’s Dynamics; of. the references

at the end of Part II. Ertel’s monograph on dynamic mefeorology has some
interesting remarks.

+X¢

=0

ey ¥ 1)

= po(a!, a¥, a¥).
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3. To obtain expansion 13.6 for the divergence «% we can proceed as follows.
Since g, the determinant of the Euclidean metric tensor gy, is a relative scalar of
weight two, it can be shown by the usual methods of obtaining covariant derivatives
of absolute tensors that the covariant derivative g, is given by

% a
= 5.’8_‘ - 291'“;'
But, in rectangular coordinates, g is unity and the Euclidean Christoffel symbols I‘iﬂ

are gero. Henece g, i zero in rectangular coordinates and consequently g; = 0 in
all coordinates. This means that

i

=T,
az‘ L
But the divergence »%, of u* i3 by definition p \:\
NN ©
4]
. « N
Y= e + T N

so that by the above result we find the following equivalent mpress{a;for the diver-
gence u%
« 1 (/g u®) \
U = " o \ )
C RV I A

. AN
If in particular i = g% ?_mﬂ , where y(z!, 2%, z¥hisa bealar field, we see that for

this uf

SN g
o A9 5
. b (\/’Mqa fn")
_ YT o

But in rectangular cartestan coprdinutes g =1, ¢*% = $°F, and so this scalar ue
reduces to the Laplacean ing r@taﬁgular eartesian coordinates. Hence Laploce's
equation in general coordinales B¢ is given by

1 3({/5 8 %3 5
Y f =0 twhen the unknown (2!, 2% 2%} 3 6 sealar feld.

Vg A L

\ \ \ Chapter 14
L. T;k}e fundamentals of & finite elastic deformation theory are not new, Kireh-
hoﬂge’t&’ﬂ made the first systenatic study, and E. and F. Cosserat in 1806 made
an extensive investigation of the subject. Ricci and Levi-Civita in 1900 made
brief but important contributions to the applications of the tensor ealculus to
clastieity theory. Léon Brillouin in 1924 simplified and recast Closserat’s treatment
with the aid of the tensor caleulus, and in 1937 F. D. Murnsghan, amobg several
Eﬁher euthore, rade contributions to the tensor theoretic treatment of elasticity
EOTY.

Chapter 15

1. One can consider strain differential invariants of order 7, i.e, scelar felds
the strain tensor €f,

that retain their forms as functions of the metric tensor Jog:
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and the derivatives of exg up to order r. Since suecessive ecovariant differentition
reduces to a corresponding order of partial differentiation in cartesian coordinates
a strain differential invariant can be written exclusively in terms of tensor fields b;;
merely replacing the derivatives of ey, by corresponding covariant derivatives. The
Michal-Thomas methods (see the 1927 papers of these authors) can be used to carry
on some intcresting rescarches on strain differential invariants. Strain differential
tensors can also be considered.
Examples of strain differential invariants of order one are

o 2120,
2z% 9P

where .5,y is the first covariant derivative of the strain tensor e.p, and whets 1
Is, snd I, are the three fundamental strain invariants. The question arjfey swhether
successive covariant differentiation of Iy, Jp, {3 and combination with“gas would
yield all the fundamental strain differential invariants. Clearly there gxist no strain
differential invariants for homogencous strains. Note that the yanighing of I is the
necessary and sufficient condition for a hemogeneous strain./)\

LS
M\

H = g**gh G eupyrny and

Chapter 16 O
1. The theory of complete systems of partia.gdjﬁei'ential equations is discussed
in Hedrick’s transtation of Goursat's Cours diériglyse, Vol. 1T, part IL.

Chipter 17
1. For an account of Riemaa;ni;ih geometry, see Kisenhart's Réemannian Geom=
etry. ‘This reference, of coursg, treats the (classicel} finite dimensional Riemannisn
geometries. Infinite dimensional and dimensionless “Riemannian” geometries were
first studied by A. D. Michial(see paper 2 under Michal in the refercnees for Part 1I3.

The applications to \db@tions of elastic media are now being studied (see papers
4, 5, and 6 under Mitha! in the references).

2. Heveral, eugiheering applications of Lagrange’s equations of motion are to
be found in the\K4rmén and Biot book.

3. .V%.Have_ seen that the Lagrangean equations of motion for a conservative
dyn?.l;gi&i system with no constraints and n degrees of frecdom were

N\ ot v i 2V
Ve i e+ 150" = e

This means that the dynamical trajectories can be considered as eurves in an n-dinen-
sional Riemannian space whose element of arc length ds s given by '
® ds* = gifghy -+, g’ def,

where the gij ave the funclions occurring in the Kinetic energy T = %g‘:jé‘éj- The
differential equations of the dynamical eurves are the sceond-order differential
equations (&)

These curves are not, in general, geodesics in the Riemannian space with arc
lengths ds given by formula (b). The question then arises whether it is possible fo
define = Riemannian space whose geodesics are some of the curves whosc differential
equations are Lagrange's equations of motion (c) for the given n-degree dynamical
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system. We shall show briefly that it is possible to define such & Riemannian
space. To do this we must first show that the Lagrangean equations of motion have
the energy integral

T+V=C

i, the sum of the kinetic and potentinl energies is a conslant along any chosen dy-
namical trajectory. In fact,
dL bL 'OL .,

— '
aF bql g‘q
Henee on using Lagrange’s equations of motion

i oL z(a_L y
@ "ot T a\er /! o
df oL A\
= a(“-"‘q ) = (2T). O
We have then immediately T 4 ¥V =€, a coostant, since the kmétlc potential

L=T~T7. &

Consider now the dynamical curves that correspond io any chas>n energy constant
C. We shall show that fhese particular dynamical eurves<@ve*the geodesies of the
n-dimensional Riemonnian space whose element of are lepg@b&s i3 given by

(o) ds? = 3(C -~ Vgilgt, - ,q")ﬂ?}dq’,

where, as in (a), the gi; are the coefficients in the kmgﬁw energy T. For convenience in
computation, let us define 4 = 2(C — V) andwdy= Agj so that (¢) can be written

(@ ds* = 05 dgf dy’.
By definftion N\
o Lhofactor of g in a
N a

+8 3
where a = the determinant %{‘the ai;. Hence, since A»- factors ont in the nu-
merator and A in {he denomma.tor respectively of a¥, we see that

O \ / a¥ = ﬁ
{ '\ W
Let *I“k }k\the Christoffel symbols based on the metrie tensor gy,  Clearly

N i L (aﬁ.%k | 245 Mm)
(e) ! “\ ’ = 547 o o
\ 3} RN X aA aa
- :‘V’zA(aiﬂ oo op g’k)

By definition
ds? = XC ~ Vg dg' &
and hence along a dynamical trajectory with energy constant € we have
ds\e |
(&-‘) ={2(C-V)}
50 that

di = |
)] EE-A
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along a dynamieal trajectory with energy constant €. By elementary esleulus we

have therefore ot ad
i dq\' N dﬂq!' dﬁql‘ q'a'
e S 7 St S S P B Sl
(o) s~ x T T d dt

The differential equations for the geodesics of the Riemannian space whose ds is

given by {c} is _ o
B

A-S,

) 2 T T g =%

On employing results (&), (), and {g} in (k), we get after obvious simplifications
; @ . dfdd 1 _0A  dddg ~
- SRS b M ML RPN 7 i iy Mo S

@ ar Ty w247 o a @ .
But g \ \)
dg’ \
e S SRy | B
Kt at N\
along a dynamical trajectory with energy constant €. Hencer\r-:qiiations {i) reduce to
&g dg d YRS

U‘) ._q. T Q‘j _q.k o

ae VR e T T e
But these differential equations are another for ‘tk the Lagrangean differential
equations of motion for our dynamical systeid. ) "We have thus proved that the
geodesics of the Riemannion space with g ds grz‘vgn'by (e) are dynamical trajeciories of
. e e . deidg .

the dynamical system with kinetic energy FS"igs7 -(% %— and potential energy V.

By retracing our steps of proof, wé c;,n show that any dynamical trajectory with
energy conslant C, i.e., any curve thap satisfies (§) with energy constant C, can be con-
sidered & geodesic in the Riema@ian apace with an element of arc length ds given in (£)-

Hiustrative Example of ¢ Shaft Carrying Four Disks.

A shaft is fixed ab.on® end and earries four disks at a distance Z apart. If uis
the moment of inertisof each disk and ¢, ¢2, ¢3, ¢* the respective angular deflections
of the four diskgi\then, if the shaft has a uniform torsional stiffucss 7, the kinetic
and potential energies ate given respectively by

& @)@ @]

a:'-}d\" 3

O V = ST + (& - 0 + (6 — ¢ + (¢ — 3

This is a conservative dynamiea! system of four degrees of freedom with no
moving constraints. Hence the dynamical trajectories with total energy eonstant

C' ecan be represented as the gesdesics of the fonr-dimensional Riemannian space
whose element of are length ds is given by

a5 = P(¢, ¢ ¢ ¢M(d'F + (39 + (de?)? + (de)E),

where
R, &, & 89 = 210 — 0@ 4 (- 9 4 g = @+ (0 - 290}

Numerous other engineering examples can be given, some simpler and some
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more saphisticated. For example, if the above shaft carries only two disks, the
dynamieal trajectories with total cnergy constant C can be represented as the
gcodesics of the surface whose ds is given by

a5 = 230 - ZL(@ + (@ - 71} Ly + (dge

A more sophisticated example is given hy the symmefrical gyroscope; see the
exercise at the cnd of Chapter 17, Here the dynamical trajectories with total
energy constant € can be represented as the geodesics of the three-dimensional
Riemannian space whose element of are length ds is given by

ds® = 2[C — Mgh cos ¢"JLIdg"y 4 (1 sin® ¢ + J cos? ¢1)(dgf)? + ~\
27 cos ¢' dg? dg® + J{dg® )
O
Chapter 18 e N

Ny

1. The eonditions for an incompressible fluid and the cnntinuigyéquations for
& fluid flow state the invariance of two integrals: the integral féPwoliume and the
integral for mass, respectively. In other words, here we h.e;,ve}t\\vvo important ex-
amples of integral invarionts. For the theory of integral invewants and its modern
generalizations, the reader is refcrred o paper 1 under Michal in the references.
There the reader will find ample references to the eazliérwork on integral invariants
by H. Poincaré, 8. Lie, E. Cartan, and E. Goursates\

2. We saw in Chapter 17 that the Riemanp*Christoffel curvatire tensor Bl
is a zero tensor in any Euckidear spacc afidiBence in our three-dimensionsl Eu-
clidean space. Define the fensor (ﬁeld) iyt by

(@) Riw'= 9B
It is evident that "4
®) )Y Bou=0

holds throughout our thﬁ?@*lﬁnensional Fuelidean space. It can be shownl that
there arc anly six independent equations in (b). Three of them are included in

(G) p \ ¥; Rc:oﬁo =05
two of them arej&cl{lded in

O oD Ragro = 0;
and the s,::::'ﬂ; one is given by

{e) &9 Bpn=0.

B?ﬁfngightforward calculation it ean be shown that.

' B 10 1 0000
w0l = o age T 47 apt o

lRﬂﬁ’fo = Dgyia — Favif

Ry = *Hur + (Puls — Tula),
where, it is to be recalled, a semicolon denotes covariant differentiation on the

surface o' = € and Teg = _é %%"‘. The *Ragys stands for the curvature tensor on

the surface. Define
1 928

baﬁ(xl, zz) = [5 2 ]zn:n.
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1f we evaluste the Iast two sets of conditions { f} on the surface 2* = 0, we now gee
readily that the vanishing of the eurvature tensor Ky in the three-dimensional
Euclidean spa.ce implies the following three sets of conditions:

Fag 1,001 Ogsy

@ o ~2Y ap om
(») bagiy — Dayig = 0
(©) *B ooy = Dopbory — Dorybap-

Equations {k) and (i) are the well-known Codazzi and Gauss equations of the
surface z° = 0. (Cf. MeConnell’s d pplications of the Absolufe Differential Caleulus,
p. 264, 1931.) ~
Conversely it can be shown that equations (g) in 3-space and equations (&) and
(i) over the surface 2* = 0 imply Ry = 0 throughout the 3-space. Butb we th,ll not go
into this matter any further.
Tf we differentiate (g) with respect to 2° and if in this result we chmma.te the

~

second derivatives b:c“f by means of (g), we find ‘ 3
\\
) O%ap _ 109" Ofay 002 ag,,, g,, Ay Of88 ) Oy
I 3% 208 o oz T or o
On differentiating the well-known identity '\;
Il 2O
o . A
we ¢an Bolve for > and obtain RN

ai{;’ :_ g};lgw%

I we subatitute this expresspn in (§), we evidently obtain
K~ Vgt _
\ 2z
Hence the surfade tensor componenis gag(@, 2%, 2°) are quadratic expressions of &
Indeed, if we\?vq;ite

\‘ ]_a'.!gas
\" e = [2 axoz:l

(Bi ' Jap = Gag + oag?® + Cup(z?)e
\ ‘A glance at {g) shows that

\

tup = 0" borbg,.
Hence, oap, bag, and cup are respestively the tensor coefficients of the first, second, ond
third fundamental forms of the surfare 20 = 0.
It can be shown that we may write {2) in the form
(3] Kepyopy = bogboy ~ boybag,
where

Euﬁ‘=a*1:'aﬂ, G=If3¢;ﬂ |, m=mu=0 df2=1 gm=-1L
and

K = %Emég?'*ﬁmﬂ? = %E(a’ﬂ"b’rq)'z — b‘lr:rbwq]’
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tha iolal curvature {Gaussian curvature) of the surfacs 2 = 0. If we apply the tensor
a™ to (1), we find

(m) tap — 2Hbog + Kttag = 0,
where H ie the mean cureature of the surface 3" = 0,
H = §a"bgq.
If B, and Ry are the principal radii of curvature, it is well known in surface theory

that 141 1 1
H=§(E+§;)"K=E;E!. I\
With these relations, we can easily caleulate A
6= | gop | = 805" erstsi: R A
For this purpose, we have to calculate the quantities O
) PO 00 ays, 1PN 0abasy 700 Berrbes, \
if similar quantities involving ¢y have been reduced with thes ' ﬁ ‘of (m). Now

N/

; 7P 0y = .
Henca x"’\\';
() 4P %0005 = 26, f:“'sf:"“’ambsa,-iﬁéﬁv
Applying 847 to (I), we obtain O
(o) A5 baybps = 2K,

If we substitute (n) and (o) in the determiimant g, we find

e 3 2” -1 :l:° 2
g=(142Hz +~E@)ﬂ)§ = a(l + El) (1 +}};) .
Hence \

¢ J
i 0y =1 DY -l
g8 a1 I—l—;—) (1+%ﬁ) ﬂ'ﬂ""iﬁ?ﬂ-ra-
MW 1

Thus, if we expand@™® %s a power series in 27, the series are convergent if | ¢ |
< Ry, where Ryf#the minimum value of the prineipat radii of eurvature of the
surface z¢ = 0.{ The same is true of many other geometrical quantities derived
from g.s ap&"’

N
ON\' “; ]

QO

¢



REFERENCES FOR PART I

Arrzen, A, C. 1. “Studies in Practical Mathematics. I. The Evaluation of a
Certain Triple Matrix Product,” Prac. Roy. Soc. Edinburgh, vol. 57 (1937 ), pp.
172-181.

2. “Btudies in Practical Mathemstics, II. The Evaluation of the Latent
Roots and Latent Vectors of a Matrix,” Proe. Roy. Soc. Edinburgh, V,Q 57
(1937), pp. 269-304.

3. “On Bernoulli’s Numerieal Sclution of Algebraic Equations,"Rrac. Roy.
Soe. Edinburgh, vol. 46 (1926), p. 289. W)

Bivgmam, M. D. “A New Method for Obtaining the Inverse Maitix,” J. Am.
Statistieal Assoc., vol. 36 (1941}, pp. 530-534. A\

Broagney, H. M. J. Aeronaut. 8ci., vol. 9 (1941), pp. 56-63;.

Bocunr, Introduction o Higher Algebra, AS

Borw and JorpAN.  Zedlschrift fir Physik, vol. 34 (1925, p. 858,

Camsraw and JageER. Operctional Caleulus in Applied\Mathematics, Oxford Uni-
versity Press, 1941, \\

Den Harrog. Mechanical Vibrations, McGraw:Hiil Book Co., 1934,

Dirac, P. A M. The Principles of GuantumdhMethanics, Oxford University Press,
1930. « W

Duncan, W. J,, and A. R. Corrar. 1. 88 Method for the Solution of Oscillation
Problems by Matrices,” Philosophicul Magazine and Journal of Science, vol, 17
(1934), pp. 865-909. N

2. “Matrices Applied to the Motions of Damped Systems,” Philosophical
Magazine and Journal of (Scince, vol. 19 (1935), pp- 197-219.

Fawrarris, L. “Le caleul dés\matrlccs,” Compies rendus (Paris), vol. 186 (1928),
pp. 619-621. "

Frazzr, Duncan, and, CoLtar. Elementory Matrices and Some Applications to
Dymamies and/Differential Eguations, Cambridge University Press, 1938,
Frazez, R. A., abd"W. J. Duncan. “The Flutter of Agroplane Wingg,” Reports

and Memormida of the (British) Aeronautical Research Commiltee, 1155, August,
1928, Y
HOLZE@{"ﬁ.\"D‘ie Berechnung der Drehschwingungen, Julius Springer, Berlin.
Horewlave, H. “Some New Methods in Matrix Caleulation,” Annals of Mathe-
o~ tical Statistics, vol. 14 (March, 1943), pp. 1-34.
y ’Kgmazh‘v, THEODORE VON. 60th Anndversary Volume, California Institute of Tech-
nology, 1941,

KiruAN and Bror. Mathematical Methods in Engineering, McGraw-Hill Book Co.,
1940,

Kussyeg, H. G., and L. Scawarz. “The Oscillating Wing with Aerodynamieally
Balanced Elevator,” N.A.C.A. Technical Memorandum 691, Octoher, 1941,

Limper, Pavl. 1. “Ouiline of Four Degrees of Freedom Tlutter Analysis,”
&. M. Douglas Aireraft Corporation Report 3572, March 20, 1942. ]

2. “Three Dimeuvsional Four Degrees of Freedom Flubter Analysis,”
8. M. Douglas Aircraft Corporation Report 3587, April 4, 1942,

8. “An Tteration Method for Caleulsting the Latcnt Roots of a Flutter
Matrix,” 8. M. Douglus Aircraft Corporation Report 3855, Sept. 29, 1042,

124



REFERENCES FOR PART 1 125

4. *A General Three Dimensional Flutter Theory as Applied to Aircraft,”
8. M. Douglas Aireraft Corporation Report 8127,

5. “Matrie Methods for Caleulating Wing Divergence Speed, Aileron Re-
versal Speed, and Effective Control,” 8. M. Douglas dircraft Corporation Be-
port 8142, Oct. 13, 1943.

MacDurrer, C. C. The Theory of Matrices, Julius Springer, Berlin, 1933; & bibli-
ographical report.

Micuar, A. D, and R. B Martiv. “Some Expansions in Vector Space,” Journal
de mathématiques pures ef appliguées, vol. 13 (1934}, pp. 69-91.

OpEvsureER, Rrros. 1, ¢ Infinite Powers of Matrices and Characteristic Roots,”
Duke Mathemaiical Journal, vol. 6 (1940}, pp. 357-301. ’

2. “Convergence of Hardy Cross’s Balancing Process,” Journal of dpplicd
Mechanics, 1940. ,.\‘\

Prms, Loums A. 1. “Matrices in Engineering,” Flecirical Hngineering,\1937,
p- 1177, g >

2. “Mauatrix Theory of Oscillatory Networks,” Journal of Agiplied Physics,
vol. 10 (1939), pp. 849-860. R7s

3. “The Matrix Theory of Four Terminal Networks,”,Pﬁélosaphioal Maga-
etne, 1940, pp. 370-395.

4, “The Transient Behavior of Four-Terminal Nepworks,” Philosophical
Magazine, 1942, pp. 174-214. O

5. “The Matrix Theory of Torsional Osci]l}tions,” Journal of Applied
Physics, vol. 13, No. 7 (1942), pp. 4344440

Tupoporsew, T. *Ceneral Theory of Aeradyiamic Instability and the Mechanism
of Tluttor,” N.A.C.A. Report 496, 1034, 'pp. 413433, capecially pp. 419-420.

TaeoporsEN, 1., and 1. E. GABRICIg:."i.' “Mechanism of Flutter,” N.A4.C.A.
Report 683, 1040, N\

2. “Non-Stationary Flow{About a Wing-Aileron-Tab Combination In-
cluding Aerodynamie Balm;tce,” Advanced Restricted Report 334, Langley
Mernorial Aeronautica\%ﬁ:rm, March, 1942,

TrMosAENRO, 8. Vibration Problems in Engineering, D. Van Nostrand Co., New
York, 1928, o\.J

Vourenga, V. Thedrylof Functionals, Blackie & Son, London, 1930. _

WeppereURN, J/ER M, Lectures on Matrices (American Mathematical Socleify
ColloqujunisPdblications, 1934); contains a good bibliography on pure matrix
theory $o 1934, : .

Warreaxgey B, T. A Treatise on the Analytical Dynamics of Particles and Rigid

Bodies, Cambridge University Press, 1927.

£

REFERENCES FOR PART I

Aprurr, P, Cours de mécanique rationelle, Tome V, Gauthier-Villars, 1926.
BriLrours, Loy, 1. Toronto Mathematical Congress, 1924.
2. *TLes lois de Pélasticité sous forme tensorfelle valable pour des coordon-
nées queleonques,” Annales de physique, vol. 3 (1925), pp- ?51‘293'
3, Les tenseurs en mécanique el en elasiicité, Masson, Paris, 1938,

Crrey, W, Z. “The Intrinsic Theory of Thin Shells and Plates, Part I — General
Theory,” Quarlerly of Applied Mathematics, vol. 1 (1944), pp- 207-3217.
CossErar, ©. and F. “Sur la théoric de P'élasticité,” Annales de Toulouse, vol. 10

(1896).



126 REFERENCES FOR PART II

Darsoux, G. Legons sur lu théorie des surfaces, vol. 2, pp. 452-527, Gauthier-Villars,
Paris, 19145,

Ersmnaart, L. P. Riemannion Geometry, Princeton University Press, 1926,

Errer, H. Mdhoden und Probleme der dyramischen Meteorologie, Julius Springer,
Berlin, 1938; Edwards Brothers, Ann Arbor, Mich., 1943,

Jerremys, H. Carlesian Tensors, Cambridge University Press, 1931,

Kipmin, TEroporm voN. 1. “The Fundamentals of the Statistical Theory of
Turbulence,” Journal of the Aeronautical Sciences, vol. 4 (1937), pp. 131-138.

2. “Turbulence,” Journal of the Royal Aeronautical Sociely, December, 1937,

Twenty-fifth Wilbur Wright Memorial Lecture. )

Kirmin, THEODORE VON, and Listmm HowsRTH. “On the Statistical Theor} of
Turbulence,” Proceedings of the Royal Society of London, vol, 164 (10383, pp.
192-215, )

Kaswer, E.  Differential-Geomatric Aspects of Dynamics, Ameriean Mathematical
Soclety, New York, 1913. AN 3

Kircmrors, G. “Uber die Gleichungen des Qleichgewichied\eities elastischen
Korpers bei nicht unendlich kleinen Verschiebungen seinérheile,” Site. Math.-
Nat. Klasse der kaiserlichen Akad. der Wiss., Vol. 9 (3652), p. 762.

Lawe, H. Hydrodynamics, Cambridge University Pres®, 1024,

Lamti, Q. Legons sur les coordonnés curvilignes ef Ieuis diverses applications, Paris,
1859, L &

Levi-Crvita, T. The Absolute Differentiol Ca{cuj‘,;s (Calculus of Tensors), Blackie
and Son, London, 1927, QO

Love, A. E. H. A Treatise on the Matkematical Theory of Blasticity, Cambridge
University Press, 1927). o

Micear, A. D. 1. “Functionals of ‘B-Dimensional Manifolds Admitting Con-
tinuous Groups of ’Iﬁ-a,nsfm;mh:tidns,” Trans. American Mathematical Society,
vol. 29 (1927), pp. 612-646( This paper includes an introduction to muttiple-
point tensor fields,) \ .

2. “General Diffgréntial Geometries and Related Topics,” Bull. American
Mathematical Sacz'st;,\'ol. 45 (1939), pp. 529-563.

3. “Recent General Trends in Mathematics,” Science, vol. 92 (1940), pp.
563-566. W</

4. “An x{nalugue of the Maupertuis-Jacobi ‘Least’ Action Principle for
Dynamital8ystems of Infinite Degrees of Freedom,”” Bull. American Mathe-
MEGU\P aeiety, vol. 49 (1943), abstract 283, p. 862.

N Physical Models of Some Curved Differentisl-Gleometric Metric Spaces

~0falnfnite Dimensions. I. Wave Motion as a Study in Geodesies,” Bull.

\Mmerican Mathematioal Society, vol. 49 (1943}, abstract 289, p. 862.

6 “Physical Models of Some Curved Differential-Cieometrie Metric Spaces
of Infinite Dimensions. II. Vibrations of Flastie Beams and Other Elastic
Media as Btudies in Geodesies,” Bull. American Mathematical Society, vol. 50
(1944), ahstract 154, p. 345,

Mrcaat, A. D., and T. Y. Troxas. 1. “Differential Invariants of Affinely Con-
nected Manifolds,” Annals of Mathematics, vol, 28 (1927}, pp. 196-236.
2. “Dificrential Invariants of Relative Quadratic Differential Forms,”
Annals of Mathematics, vol. 28 (1927), pp. 631-688. '
McConweLr, A. J. Applications of the Absolute Differential Caleulus, Blackie and
Son, London, 1931,
MurwagaaN, F. D, “Finite Deformations of an Elastic Solid,” American Journal
of Mathematics, vol, 59 (1937), pp, 235-260,



REFERENCES FOR PART II 127

Revrrer, ¥. “Eine Anwendung des ahsoluten Parallelismus auf die Schalen-
theorie,” Z. angew. Math, Mech., vol. 22 (1942), pp. 87-98.

Ricct, G., and T. LEv-Crvita.  * Methoedes de caleul differentiel absolu et leurs
appllca.tlons,” Muthematische Annalen, vol. 54 (1900), pp. 125-201.

Remany, B, {ber die Hypothesen, welche der Geometrie zu Grunde liegen, 1854
((esammelte Werke, 1876, pp. 254-269).

Srxam, J. L. “On the Geometry of Dynamies,” Phil. Prans. Royal Society London,
A, vol. 226 {1926-1927), pp. 31-106.

Syneg, J. L., and W. Z. CrmeN. *“The Tntrinsic Theory of Elastic Shells and Plal
Theodore van Karmin Anniversary Volume, 1941, pp. 103-120.

Tmomas, T. Y. Differential Invariants of Generalized Spaces, Cambridge University,
Prese, 1034. &

Vesuen, 0. ‘‘Invariants of Quadratic Difierential Forms,” Cambridge Fracb 34
Clambridge University Press, 1927,

VesLEN, Q., and I. H, C. Warrereap, *The Foundations of Dlﬁerenha.l’(}eam-
etry,” Cambndge Tract 20, Cambridge University Press, 1932, 3

WensTER, A. G. The Dynamics of Particles and of Rigid, E.T,astw, cmd Fitiid Bodies,
G. E. Stechert & Co., New York, 1942 reprint.

Wurrraxer, B, T. 4 Treatase on the Analytical Dynamics of Partwles and Rigid
Bodies, Cambridge University Press, 1927.

WeiaaT, §. E. “Invariants of Quadratic Dlﬁerentaa}xﬁms,” Cambridge Tract 9,

Cambridze Uviversity Press, 1808. N\
): -
¢ if;\
\\ )
<
:t\"’
\"\.Qo
O\
e )
40\ V¥4



INDEX

Aireraft flutter, ealeulation of, 34,85, 86
deseription of, 82
matric differential equation of, 33
need for matrie theory in eslenlations
for fast aircraft, 37
ArTREX, 124
APPFELL, 125

Biwgra, 14, 124

Bror, 34, 113, 124

BLEARNTY, 124

Bocuer, 111, 124

Borw, 111, 1241

Boundary layer, theory of Prandil, 109
thickness of, 109

Boundary-layer equations, 104, 105, 106,

107, 108
Brivrours, 117, 125

Cassraw, 34, 124
Carrer-HayinTox theorem for ma,"-:
riced, 12 A
Crex, x, 105, 127 \
Carigrorrer symbols, Euelidedr, 53
multidimensional Fuelidesn, 95
proof of law of traghsformation of,
114, 115 :
Rierannian, 96¢ )
Copazzr equa,tjoé}f"or a surface, 122
CorLran, 1, 4‘,}5‘5; 124
Compressible, fluids, 103, 104
Contraghion of a tensor, 116
Corr¢lafion tensor Geld in turbulence,
¥3, T4
CosSerat, T, and F., 117
Covariant differentiation, its commu-
tativity in Euclidean spaces, 58, 58
itz non-commutativity in general in
Riemannian spaces, 99, 100
of Buclidean metric tensor, 59
of scalar field, 60
of tensor fields in general, 58
of veetor ficlds, 56, 57
Cramer’s rule, 111

Crystalline media, 93
Curvature of a surface, Gaussian, 123
mean, 123

Dareorx, 126

Den Harrog, 124 )

Differential equations, example, 28, 26N
frequencies and amplitudes, 29y 30,

a1 2 A\

hgrmeonie golutions, 28 ‘\
of small oseillations, 2&,.2?
solution of linear, 20y
with variable coe"iﬂ'ﬁ{ién’ts, 21,22

Differentiation of matriccs, 16

Dirac, 111, 124

Douncar, 178835, 124

Dynamigal, #ystems with n degrees of

freedom, 24, 101

Laseshgo’s equations of motion of,

A0 24, 101
CarTan, 121 N
‘EisENHART, 118, 126

Elastic deformation, change in volume
under, 79, 80, 8t
matrix methods in formulation of
finite, 38, 30, 40
tensor methods in formulation of
finite, 78, 76, 77
Flastic potential, 81, 92 :
Equstion of continuity, 69, 70, 71, 103
ErrEL, 114, 116, 126
FEuclidean Christoffel symbols, 53
alternative form for, 54
exercisc on, 55
for Euclidean plane, 54
law of transformation of, 53
multidimensionsal, 95
Fuclidean metric tensor, 43
exercises on, 47
its law of transformation, 46
Euclidean spaces, 42
multidimensional, 95
PFulerian strain tensor, 77, 73
Eurer-[AGRANGE equations for geo-
desies, 100

129



130

Fawraree, 112, 124
Fluids, compressible, 103, 104
incompressible, 103, 104
boundary-layer equations for, 104,
105, 106
Navier-Stokes equations for ineom-
pressible viscous, 104
KNavier-Stokes equations for viscous,
69, 70
FrazEg, 1, 34, 85, 124
Functionals, 18, 112
Fundamenta? forms of a surface, 122

GARRICE, 36, 125
Gauss, 43

equations for a surface, 122
General theory of relativity, 42
Geodesic coordinates, 97
Geodesics, 100

dynamical trajectories as, 118, 119,

120, 121

Euler-Lagrange equations for, 100

Goursar, 118, 121

~

HoLzer, 124 w

NS

Homeogeneous strains, 83
fundamental theorem on, 84, 85 86
Hooke's law, 94
HoreLuxg, 111, 124 ’(,\
L\

HowantH, 126

Hydrodymnamies, 42 N
Eulerian cquations)116
Lagrangean eguations, 116

R

Integral i irg}'i'alnts, 121

Isotropié:%edium, 92, 93, 4
condition for, 92, 93
Etyess-strain relations for, 03, 94

\Iepfropm atrain, 84

JAmGER, 34, 124
JEFFREYS, 126
Jogrpaw, 111, 124

Kiruiw, x, 34, 38, 74, 113, 124, 125
Kasrer, 126

Killing’s differential equations, 88
Kinetic potential, 102

Krrerrorr, 117, 126

Kussner, 124

INDEX

Lagrange’s equations of moaticn, 24, 101
102

Lagrangean strain tcasor, 77, 78
Lawn, 116, 126
Laplace equation, 62, 63

for veetor Gelds, 65

in eurvilinear coordinates, 63, 64
Levi-CrviTa, 117, 127

Lie, 121
Libssr, ix, 124, 125
Lix, x, 104, 105 ~\

Line element 42
exercises on, 45, 46, 47 2\ N
geadesic form of, 105 ¢
in curvilinear cnurd%'n;mt‘es, 45, 48, 47
Ricmannian, 96 ™
Linear algebraic ednations, solutions, 9
numerieghy I
punchedsta¥d methods, 14
Linear differential equations, applica-
tion {of matric exponential to, 20
ingmatrices, 21, 22
fusthod of successive substitutions in
" solution of, 22
" with eonstant coefficients, 20
with variable coefficients, 21, 22
Lirep, ix
Love, 126

MacDurrER, 125
Marmn, 112, 125
Matric cxponential, application to sys-
tems of linear differential equa-
tions with constant coefficients, 20
gonvergence of, 112
definition of, 15
propertics of, 16
Matrie power series, definition of, 15
theorem on computation of, 18
Matrix, addition, 2
adjoint of, 39
application of inverse, to solution of
linear algebraic equations, 9
Cayley-ITamilton thecrem, 12
charaeteristic equation of, 12
characteristic function of, 12
characteristic roots of, 12
column, 2
definition of, 1
differentiation of, with respect to nu-
merical variable, 16



INDEX

Matrix, dyoamical, 29
example of non-commutativity of
matrix multiplication, &
index and power laws, 11
integration of, with respect to numer-
ical variable, 17
inverse, 8
mualtiplication, &
by number, 11
norm of, 112
of same type, 2
.order, 2
polynomials in g, 11
row, 2
rule for computation of inverse, 13
square, 2
strain, 39, 40, 41
symmetrie, 40
trace of, 13, 111
unit, 4
zero, 3
McConnrLL, 122, 126 -
Micaaz, ix, 3, 112, 114, 116, 118, 128,
125, 126
MILLirAn, X
Multiple-point tensor fields, 71, 72,
74
in clasticity theory, 76
in Fuclidean geometry, 71,
in turbulence, 73, 74 , 2\
MuenasgaAN, 117, 126

™

~ 4

@, 73,74

Y

Navier-Stokes diffefeutial equations for
a viscous fidid, 66
in curviling\a,; cordinates, 70
subject \ta_gondition of incompressi-
bility, 104
Norm'oba matrix, 112
Nofinal coordinates, 116
\N drmed linear ring, 112

OLDENBTRGER, 125

Pipes, 125

Plestic deformation, 114

PoiNcarg, 121

PorssoN equation, 66, 67, 68

Principal radii of curvature of boundary-

layer surface, 108
Purr, ix

Quadrasic differential form, 45, 46

131

REeuTTER, 127
Ricer, 137, 127
Riemaww, 127
Riemann-Christoffel curvature tensor,
99, 100
Riemannian geometry, 96, 97, 98, 99,
100
applicationstoboundary-layer theory,
103, 104, 105, 106, 107, 108, 109,
119, 121, 123
applications to classical dynamies
101, 102
example, 98
infinite dimensional, x, 118 ¢
Rigid displacement, 40, 77 ()

N

N
\Y,

Sealar density, 60, 61467 3
Sealar field, 49 m’\’\ 7
relative, 60,615.62
Scawars, 124\
Strain inyatignt, 82, 117, 118
Strain piattis, 39, 40, 41
indinfinitesimal theory, 41
St;ré,in’tensor, 48, 49
L SEulerian, 77

T3 " Lagrangean, 77

variation of, 86, 87, 88
Stress-strain  relations for isotropic
medium, 93, 94
Stress tensor, 89, 90
symmetry of, 91
Stress vector, 89, 90
Summation convention, 4, 43
@ylvester’s theorem, 112, 118
Svxem, 127

Tensor analysis, 56
applicationsto boundary-layer theory,
103, 104, 105, 106, 107, 108, 109,
110, 121, 122, 123 )
applications t0 clagsical dynamics,
101, 102, 118, 119, 120, 121
in multidimensional Fuclidean spaces,
a5
in Riemannian Spaces, 97, 99, 100
Tensor field, contraction of a, 116
eovariant differentiation of, 57, 58
exercises on, 59
general definition of, 57, 58
property of a, 59
relative, 60, 117




132

Tensor field, Riemann-Christoffel curva-

ture, 99, 100
weight of, 60

Tensor field of rank two, contravariant,

50
covariant, 50
mixed, 50
TrEODORSEN, 33, 36, 125
Tronas, 114, 116, 118, 126, 127
Tmvosuenka, 125
Turbulence, 73, 74

carrelation tensor field in, 73, 74

INDEX

Vector field, contravariant, 49
covariant, 49
in rectangular cartesian coordinates,
b0
Velocity field, 51
divergence of, 103, 117
VorrerRra, 112, 125

Wave equation, 65, 66
WessTER, 116, 127
WEDDEREURY, 125 o &N\
WHiTEHEAD, 114, 127 \\
WHITTARER, 28, 125, 127.{}}’

VEBLEN, 114, 127 WricET, 127 o
« \/
NG *
o
&Y
N\
A
“' &
i”'\';
o\ o
‘:s::‘
N
S
A\

A\
LD
29N
A
»
7 ~s
$7
QY
<§,’/
=~



	Page 1�
	Page 2�
	Page 3�
	Page 4�
	Page 5�
	Page 6�
	Page 7�
	Page 8�
	Page 9�
	Page 10�
	Page 11�
	Page 12�
	Page 13�
	Page 14�
	Page 15�
	Page 16�
	Page 17�
	Page 18�
	Page 19�
	Page 20�
	Page 21�
	Page 22�
	Page 23�
	Page 24�
	Page 25�
	Page 26�
	Page 27�
	Page 28�
	Page 29�
	Page 30�
	Page 31�
	Page 32�
	Page 33�
	Page 34�
	Page 35�
	Page 36�
	Page 37�
	Page 38�
	Page 39�
	Page 40�
	Page 41�
	Page 42�
	Page 43�
	Page 44�
	Page 45�
	Page 46�
	Page 47�
	Page 48�
	Page 49�
	Page 50�
	Page 51�
	Page 52�
	Page 53�
	Page 54�
	Page 55�
	Page 56�
	Page 57�
	Page 58�
	Page 59�
	Page 60�
	Page 61�
	Page 62�
	Page 63�
	Page 64�
	Page 65�
	Page 66�
	Page 67�
	Page 68�
	Page 69�
	Page 70�
	Page 71�
	Page 72�
	Page 73�
	Page 74�
	Page 75�
	Page 76�
	Page 77�
	Page 78�
	Page 79�
	Page 80�
	Page 81�
	Page 82�
	Page 83�
	Page 84�
	Page 85�
	Page 86�
	Page 87�
	Page 88�
	Page 89�
	Page 90�
	Page 91�
	Page 92�
	Page 93�
	Page 94�
	Page 95�
	Page 96�
	Page 97�
	Page 98�
	Page 99�
	Page 100�
	Page 101�
	Page 102�
	Page 103�
	Page 104�
	Page 105�
	Page 106�
	Page 107�
	Page 108�
	Page 109�
	Page 110�
	Page 111�
	Page 112�
	Page 113�
	Page 114�
	Page 115�
	Page 116�
	Page 117�
	Page 118�
	Page 119�
	Page 120�
	Page 121�
	Page 122�
	Page 123�
	Page 124�
	Page 125�
	Page 126�
	Page 127�
	Page 128�
	Page 129�
	Page 130�
	Page 131�
	Page 132�
	Page 133�
	Page 134�
	Page 135�
	Page 136�
	Page 137�
	Page 138�
	Page 139�
	Page 140�
	Page 141�
	Page 142�

